Innovative technology and deep uncertainty during the design and construction process of complex projects introduce great challenges to their organization and management.The traditional methods,represented in the proj...Innovative technology and deep uncertainty during the design and construction process of complex projects introduce great challenges to their organization and management.The traditional methods,represented in the project management body of knowledge(PMBOK)guide,can solve systematic problems;however,they cannot solve complex problems.Based on the management practice implemented in the deck pavement project of the Hong Kong-Zhuhai-Macao Bridge(HZMB),in this work,we propose a meta-synthesis management framework for a complex project from the perspective of the science of complexity.The method deems that the complexity of the project has the characteristic of being multi-scale both in the design phase and the construction phase.These problems can be classified into different categories,each of which requires a different strategy.As a result,it is first necessary to adopt the"exploration"strategy to reduce project complexity and to transform the deep uncertainty problems into systematic problems.Then,the"exploitation"strategy should be used to apply the PMBOK and other traditional methods to achieve the design and construction goals of the project and to improve its efficiency.More specifically,in the design phase of a complex project,the"innovative integration"process is used for the exploration of the new engineering technology and knowledge;then,the"functional integration"process is employed to define the system architecture,the interface relationship,the technical index,and other functions.In the construction phase,the"adaptive integration"process is used for the construction of the engineering organization system;next,the"efficient integration"process is employed to improve the actual construction performance.The meta-synthesis management framework proposed in this work reveals the multi-scale principle of solving complex problems in the management practice of a complex project,and develops the methodology of metasynthesis.展开更多
Complex integrity is one of the main characteristics of infrastructure mega-projects(IMPs). Cost,technology, risk, duration, environmental impact, and other uncertain complexities are interrelated and constitute a cha...Complex integrity is one of the main characteristics of infrastructure mega-projects(IMPs). Cost,technology, risk, duration, environmental impact, and other uncertain complexities are interrelated and constitute a challenging and complex management problem. At present, there is no unified understanding of or solutions to these complex integrity problems. This study analyzes the complex integrity of the island-tunnel subproject of the Hong Kong-Zhuhai-Macao Bridge(HZMB) project and proposes an improved design-build(DB) mode in which the owner provides a preliminary design and has the right to form and manage consortium. This improved DB mode creatively degrades the special complexities that arise from multiple dimensions. On this basis, it is an efficacious way to grasp the main contradictions, integrate the effective resources, and degrade the complex integrity in multiple dimensions and at multiple levels so as to effectively deal with the complexity management of IMPs.展开更多
Design Units: CCCC Highway Consultants Co., Ltd.; China Zhongtie Major Bridge Reconnaissance & Design Institute Co., Ltd. Construction Units: China Communications Construction Company Limited Consortium; China Rai...Design Units: CCCC Highway Consultants Co., Ltd.; China Zhongtie Major Bridge Reconnaissance & Design Institute Co., Ltd. Construction Units: China Communications Construction Company Limited Consortium; China Railway Shanhaiguan Bridge Group Co., Ltd.; Wuhan Heavy Engineering Co., Ltd.; CCCC First Harbor Engineering Company Ltd. Consortium; Guangdong Changda High- way Engineering Co., Ltd.; China ZhongTie Major Bridge Engineering Group Co., Ltd. Consortium; Chongqing Zhixiang Paving Technology Engineering Co., Ltd.; Hunan Construction Engineering Group; China Railway Electrification Bureau Group Co., Ltd. Consortium展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.71571057 and 71390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Innovative technology and deep uncertainty during the design and construction process of complex projects introduce great challenges to their organization and management.The traditional methods,represented in the project management body of knowledge(PMBOK)guide,can solve systematic problems;however,they cannot solve complex problems.Based on the management practice implemented in the deck pavement project of the Hong Kong-Zhuhai-Macao Bridge(HZMB),in this work,we propose a meta-synthesis management framework for a complex project from the perspective of the science of complexity.The method deems that the complexity of the project has the characteristic of being multi-scale both in the design phase and the construction phase.These problems can be classified into different categories,each of which requires a different strategy.As a result,it is first necessary to adopt the"exploration"strategy to reduce project complexity and to transform the deep uncertainty problems into systematic problems.Then,the"exploitation"strategy should be used to apply the PMBOK and other traditional methods to achieve the design and construction goals of the project and to improve its efficiency.More specifically,in the design phase of a complex project,the"innovative integration"process is used for the exploration of the new engineering technology and knowledge;then,the"functional integration"process is employed to define the system architecture,the interface relationship,the technical index,and other functions.In the construction phase,the"adaptive integration"process is used for the construction of the engineering organization system;next,the"efficient integration"process is employed to improve the actual construction performance.The meta-synthesis management framework proposed in this work reveals the multi-scale principle of solving complex problems in the management practice of a complex project,and develops the methodology of metasynthesis.
基金funded by the National Natural Science Foundation of China(Grant Nos.71390520,71390521,71271107,91646123,71671088)Key Laboratory for Public Projects Audit of Jiangsu Province,P.R.China(GGSS2016-12)
文摘Complex integrity is one of the main characteristics of infrastructure mega-projects(IMPs). Cost,technology, risk, duration, environmental impact, and other uncertain complexities are interrelated and constitute a challenging and complex management problem. At present, there is no unified understanding of or solutions to these complex integrity problems. This study analyzes the complex integrity of the island-tunnel subproject of the Hong Kong-Zhuhai-Macao Bridge(HZMB) project and proposes an improved design-build(DB) mode in which the owner provides a preliminary design and has the right to form and manage consortium. This improved DB mode creatively degrades the special complexities that arise from multiple dimensions. On this basis, it is an efficacious way to grasp the main contradictions, integrate the effective resources, and degrade the complex integrity in multiple dimensions and at multiple levels so as to effectively deal with the complexity management of IMPs.
文摘Design Units: CCCC Highway Consultants Co., Ltd.; China Zhongtie Major Bridge Reconnaissance & Design Institute Co., Ltd. Construction Units: China Communications Construction Company Limited Consortium; China Railway Shanhaiguan Bridge Group Co., Ltd.; Wuhan Heavy Engineering Co., Ltd.; CCCC First Harbor Engineering Company Ltd. Consortium; Guangdong Changda High- way Engineering Co., Ltd.; China ZhongTie Major Bridge Engineering Group Co., Ltd. Consortium; Chongqing Zhixiang Paving Technology Engineering Co., Ltd.; Hunan Construction Engineering Group; China Railway Electrification Bureau Group Co., Ltd. Consortium