随着可再生能源并入多区域电力系统,其不确定性大大增加了电力系统多区域经济调度的复杂度。如何高效求解含有风力和太阳能的多区域经济调度(multi-areaeconomic dispatch containing wind and solar energy,MAEDWS)问题面临着严峻的挑...随着可再生能源并入多区域电力系统,其不确定性大大增加了电力系统多区域经济调度的复杂度。如何高效求解含有风力和太阳能的多区域经济调度(multi-areaeconomic dispatch containing wind and solar energy,MAEDWS)问题面临着严峻的挑战。针对现有优化算法在处理MAEDWS问题时存在收敛速度慢和求解精度低等不足,该文提出一种基于衍生搜索的政治优化(derivative search-based political optimizer,DSPO)算法。在政治优化算法的基础上,引入首脑引领策略和衍生搜索机制。前者引领候选解前往更有希望的区域,加快收敛速度;后者在区域获胜者周围衍生邻域解,丰富多样性。该文将DSPO算法和其他6种代表性算法应用于MAEDWS问题,并进行对比分析。收敛曲线和性能指标的结果表明DSPO算法在收敛效率、求解精确度、稳定性方面取得了整体最优。展开更多
文摘随着可再生能源并入多区域电力系统,其不确定性大大增加了电力系统多区域经济调度的复杂度。如何高效求解含有风力和太阳能的多区域经济调度(multi-areaeconomic dispatch containing wind and solar energy,MAEDWS)问题面临着严峻的挑战。针对现有优化算法在处理MAEDWS问题时存在收敛速度慢和求解精度低等不足,该文提出一种基于衍生搜索的政治优化(derivative search-based political optimizer,DSPO)算法。在政治优化算法的基础上,引入首脑引领策略和衍生搜索机制。前者引领候选解前往更有希望的区域,加快收敛速度;后者在区域获胜者周围衍生邻域解,丰富多样性。该文将DSPO算法和其他6种代表性算法应用于MAEDWS问题,并进行对比分析。收敛曲线和性能指标的结果表明DSPO算法在收敛效率、求解精确度、稳定性方面取得了整体最优。