期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Calculation of Coefficients of Simplest Normal Forms of Hopf and Generalized Hopf Bifurcations 被引量:3
1
作者 田瑞兰 张琪昌 何学军 《Transactions of Tianjin University》 EI CAS 2007年第1期18-22,共5页
The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling an... The coefficients of the simplest normal forms of both high-dimensional generalized Hopf and high-dimensional Hopf bifurcation systems were discussed using the adjoint operator method. A particular nonlinear scaling and an inner product were introduced in the space of homogeneous polynomials. Theorems were established for the explicit expression of the simplest normal forms in terms of the coefficients of both the conventional normal forms of Hopf and generalized Hopf bifurcation systems. A symbolic manipulation was designed to perform the calculation of the coefficients of the simplest normal forms using Mathematica. The original ordinary differential equation was required in the input and the simplest normal form could be obtained as the output. Finally, the simplest normal forms of 6-dimensional generalized Hopf singularity of type 2 and 5-dimensional Hopf bifurcation system were discussed by executing the program. The output showed that the 5th- and 9th-order terms remained in 6-dimensional generalized Hopf singularity of type 2 and the 3rd- and 5th-order terms remained in 5-dimensional Hopf bifurcation system. 展开更多
关键词 nonlinear systems hopf bifurcations simplest normal form COEFFICIENT symbolic manipulation
下载PDF
WAMS-based monitoring and control of Hopf bifurcations in multi-machine power systems
2
作者 Shao-bu WANG Quan-yuan JIANG Yi-jia CAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第6期840-848,共9页
A method is proposed to monitor and control Hopf bifurcations in multi-machine power systems using the information from wide area measurement systems (WAMSs). The power method (PM) is adopted to compute the pair of co... A method is proposed to monitor and control Hopf bifurcations in multi-machine power systems using the information from wide area measurement systems (WAMSs). The power method (PM) is adopted to compute the pair of conjugate eigenvalues with the algebraically largest real part and the corresponding eigenvectors of the Jacobian matrix of a power system. The distance between the current equilibrium point and the Hopf bifurcation set can be monitored dynamically by computing the pair of con- jugate eigenvalues. When the current equilibrium point is close to the Hopf bifurcation set, the approximate normal vector to the Hopf bifurcation set is computed and used as a direction to regulate control parameters to avoid a Hopf bifurcation in the power system described by differential algebraic equations (DAEs). The validity of the proposed method is demonstrated by regulating the reactive power loads in a 14-bus power system. 展开更多
关键词 Wide area measurement system (WAMS) hopf bifurcations Monitoring of bifurcations Control of bifurcations
下载PDF
HOPF BIFURCATIONS OF NONAUTONOMOUS SYSTEMS AT RESONANCE
3
作者 程崇庆 季文美 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第5期443-453,共11页
Hop/bifurcations of periodic nonautonomous systems at resonance are studied and the results similar to those at nonresonance are drawn.
关键词 hopf bifurcations OF NONAUTONOMOUS SYSTEMS AT RESONANCE CYCLE AT
下载PDF
Hopf Bifurcations of a Chemostat System with Bi-parameters
4
作者 李晓月 千美华 +1 位作者 杨建平 黄启昌 《Northeastern Mathematical Journal》 CSCD 2004年第2期167-174,共8页
We study a chemostat system with two parameters, So-initial density and D-flow-speed of the solution. At first, a generalization of the traditional Hopf bifurcation theorem is given. Then, an existence theorem for the... We study a chemostat system with two parameters, So-initial density and D-flow-speed of the solution. At first, a generalization of the traditional Hopf bifurcation theorem is given. Then, an existence theorem for the Hopf bifurcation of the chemostat system is presented. 展开更多
关键词 hopf bifurcation chemostat system EQUILIBRIA
下载PDF
Hopf Bifurcations, Drops in the Lid–Driven Square Cavity Flow
5
作者 Salvador Garcia 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第4期546-572,共27页
The lid-driven square cavity flow is investigated by numerical experiments.It is found that from Re=5,000 to Re=7,307.75 the solution is stationary,but at Re=7,308 the solution is time periodic.So the critical Reynold... The lid-driven square cavity flow is investigated by numerical experiments.It is found that from Re=5,000 to Re=7,307.75 the solution is stationary,but at Re=7,308 the solution is time periodic.So the critical Reynolds number for the first Hopf bifurcation localizes between Re=7,307.75 and Re=7,308.Time periodical behavior begins smoothly,imperceptibly at the bottom left corner at a tiny tertiary vortex;all other vortices stay still,and then it spreads to the three relevant corners of the square cavity so that all small vortices at all levels move periodically.The primary vortex stays still.At Re=13,393.5 the solution is time periodic;the long-term integration carried out past t_(∞)=126,562.5 and the fluctuations of the kinetic energy look periodic except slight defects.However at Re=13,393.75 the solution is not time periodic anymore:losing unambiguously,abruptly time periodicity,it becomes chaotic.So the critical Reynolds number for the second Hopf bifurcation localizes between Re=13,393.5 and Re=13,393.75.At high Reynolds numbers Re=20,000 until Re=30,000 the solution becomes chaotic.The long-term integration is carried out past the long time t_(∞)=150,000,expecting the time asymptotic regime of the flow has been reached.The distinctive feature of the flow is then the appearance of drops:tiny portions of fluid produced by splitting of a secondary vortex,becoming loose and then fading away or being absorbed by another secondary vortex promptly.At Re=30,000 another phenomenon arises—the abrupt appearance at the bottom left corner of a tiny secondary vortex,not produced by splitting of a secondary vortex. 展开更多
关键词 Navier-Stokes equations hopf bifurcations CHAOS
原文传递
LOCAL AND GLOBAL HOPF BIFURCATIONS FOR A PREDATOR-PREY SYSTEM WITH TWO DELAYS 被引量:1
6
作者 Zhuang Kejun Li Xiangao Li Zunxian (School of Mathematical Sciences, South China Normal University, Guangzhou 510631) 《Annals of Differential Equations》 2006年第3期483-488,共6页
In this paper, the Leslie predator-prey system with two delays is studied. The stability of the positive equilibrium is discussed by analyzing the associated characteristic transcendental equation. The direction and s... In this paper, the Leslie predator-prey system with two delays is studied. The stability of the positive equilibrium is discussed by analyzing the associated characteristic transcendental equation. The direction and stability of the bifurcating periodic solutions are determined by applying the center manifold theorem and normal form theory. The conditions to guarantee the global existence of periodic solutions are given. 展开更多
关键词 hopf bifurcation STABILITY predator-prey system DELAY
原文传递
LOCAL AND GLOBAL HOPF BIFURCATIONS IN A DELAYED HUMAN RESPIRATORY SYSTEM
7
作者 Li Zunxian Li Xiangao Zhuang Kejun (School of Math. Sciences, South China Normal University, Guangzhou 510631) 《Annals of Differential Equations》 2006年第3期316-322,共7页
This paper considers a delayed human respiratory model. Firstly, the stability of the equilibrium of the model is investigated and the occurrence of a sequence of Hopf bifurcations of the model is proved. Secondly, th... This paper considers a delayed human respiratory model. Firstly, the stability of the equilibrium of the model is investigated and the occurrence of a sequence of Hopf bifurcations of the model is proved. Secondly, the explicit algorithms which determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived by applying the normal form method and the center manifold theory. Finally, the existence of the global periodic solutions is showed under some assumptions on the model. 展开更多
关键词 respiratory system hopf bifurcation STABILITY
原文传递
Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
8
作者 黄习习 肖敏 +3 位作者 Leszek Rutkowski 包海波 黄霞 曹进德 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期125-140,共16页
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation... A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs. 展开更多
关键词 mobile wireless sensor networks REACTION-DIFFUSION hopf bifurcation hybrid control
下载PDF
Generalized Hopf Bifurcation in a Delay Model of Neutrophil Cells Model
9
作者 Suqi Ma S. J. Hogan 《International Journal of Modern Nonlinear Theory and Application》 2024年第2期11-28,共18页
The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the... The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the continuation of the bifurcating periodical solution starting from Hopf point is exploited. The generalized Hopf point is tracked by seeking for the critical value of free parameter of the switching phenomena of the open loop, which describes the lineup of bifurcating periodical solutions from Hopf point. The normal form near the generalized Hopf point is computed by Lyapunov-Schimdt reduction scheme combined with the center manifold analytical technique. The near dynamics is classified by geometrically different topological phase portraits. 展开更多
关键词 Generalized hopf Bifurcation DDE-Biftool Software Norm Form
下载PDF
Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system 被引量:11
10
作者 薛薇 齐国元 +2 位作者 沐晶晶 贾红艳 郭彦岭 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期325-332,共8页
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter va... In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system. 展开更多
关键词 HYPER-CHAOS four-wing chaotic system one equilibrium hopf bifurcation circuit implementation
下载PDF
HOPF BIFURCATION OF AN OSCILLATOR WITH QUADRATIC AND CUBIC NONLINEARITIES AND WITH DELAYED VELOCITY FEEDBACK 被引量:6
11
作者 王怀磊 王在华 胡海岩 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期426-434,共9页
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,th... This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,the equilibrium of the system may undergo a number of stability switches with an increase of time delay,and then becomes unstable forever.At each critical value of time delay for which the system changes its stability,a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay.The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability.It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions. 展开更多
关键词 delay differential equation stability switches supercritical hopf bifurcation subcritical hopf bifurcation Fredholm alternative
下载PDF
HOPF BIFURCATION OF A NONLINEAR RESTRAINED CURVED PIPE CONVEYING FLUID BY DIFFERENTIAL QUADRATURE METHOD 被引量:7
12
作者 Wang Lin Ni Qiao Huang Yuying (Department of Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期345-352,共8页
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement ... This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe. 展开更多
关键词 curved fluid conveying pipe hopf bifurcation nonlinear vibration DQM
下载PDF
Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations 被引量:4
13
作者 Yan ZHOU Wei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第5期689-706,共18页
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates... The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained. 展开更多
关键词 double hopf bifurcation composite laminated piezoelectric plate periodic solution quasi-periodic solution
下载PDF
Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback 被引量:3
14
作者 刘爽 赵双双 +1 位作者 王兆龙 李海滨 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期345-353,共9页
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of t... The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results. 展开更多
关键词 electromechanical coupling time delay hopf bifurcation STABILITY
下载PDF
Hopf Bifurcation Control of a Hyperchaotic Circuit System 被引量:3
15
作者 LIANG Cui-Xiang TANG Jia-Shi +1 位作者 LIUSu-Hua HAN Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期457-462,共6页
This paper is concerned with the Hopf bifurcation control of a new hyperchaotic circuit system. The stability of the hyperchaotie circuit system depends on a selected control parameter is studied, and the critical val... This paper is concerned with the Hopf bifurcation control of a new hyperchaotic circuit system. The stability of the hyperchaotie circuit system depends on a selected control parameter is studied, and the critical value of the system parameter at which Hopf bifurcation occurs is investigated. Theoretical analysis give the stability of the Hopf bifurcation. In particular, washout filter aided feedback controllers are designed for delaying the bifurcation point and ensuring the stability of the bifurcated limit cycles. An important feature of the control laws is that they do not result in any change in the set of equilibria. Computer simulation results are presented to confirm the analytical predictions. 展开更多
关键词 hopf bifurcation hyperchaotic circuit system washout filter limit cycle
下载PDF
A modified averaging scheme with application to the secondary Hopf bifurcation of a delayed van der Pol oscillator 被引量:9
16
作者 Z.H.Wang H.Y.Hu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第4期449-454,共6页
In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and... In this paper, a modified averaging scheme is presented for a class of time-delayed vibration systems with slow variables. The new scheme is a combination of the averaging techniques proposed by Hale and by Lehman and Weibel, respectively. The averaged equation obtained from the modified scheme is simple enough but it retains the required information for the local nonlinear dynamics around an equilibrium. As an application of the present method, the delay value for which a secondary Hopf bifurcation occurs is successfully located for a delayed van der Pol oscillator. 展开更多
关键词 Time delay ·Secondary hopf bifurcation·The averaging technique van der Pol oscillator
下载PDF
Diffusion-driven instability and Hopf bifurcation in Brusselator system 被引量:2
17
作者 李波 王明新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第6期825-832,共8页
The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stabil... The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system. 展开更多
关键词 Brusselator system hopf bifurcation stability diffusion-driven hopf bifurcation
下载PDF
STOCHASTIC HOPF BIFURCATION IN QUASIINTEGRABLE-HAMILTONIAN SYSTEMS 被引量:2
18
作者 甘春标 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期558-566,共9页
A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their a... A new procedure is developed to study the stochastic Hopf bifurcation in quasi- integrable-Hamiltonian systems under the Gaussian white noise excitation.Firstly,the singular bound- aries of the first-class and their asymptotic stable conditions in probability are given for the averaged Ito differential equations about all the sub-system's energy levels with respect to the stochastic aver- aging method.Secondly,the stochastic Hopf bifurcation for the coupled sub-systems are discussed by defining a suitable bounded torus region in the space of the energy levels and employing the theory of the torus region when the singular boundaries turn into the unstable ones.Lastly,a quasi-integrable- Hamiltonian system with two degrees of freedom is studied in detail to illustrate the above procedure. Moreover,simulations by the Monte-Carlo method are performed for the illustrative example to verify the proposed procedure.It is shown that the attenuation motions and the stochastic Hopf bifurcation of two oscillators and the stochastic Hopf bifurcation of a single oscillator may occur in the system for some system's parameters.Therefore,one can see that the numerical results are consistent with the theoretical predictions. 展开更多
关键词 quasi-integrable-Hamiltonian system Gaussian white noise torus region stochastic hopf bifurcation
下载PDF
Analytical Hopf Bifurcation and Stability Analysis of T System 被引量:2
19
作者 Robert A.VanGorder S.Roy Choudhury 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第4期609-616,共8页
Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following th... Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes. 展开更多
关键词 extended hopf bifurcation analysis method of multiple scales T system stability analysis
下载PDF
Effects of viscoelasticity on the stability and bifurcations of nonlinear energy sinks 被引量:2
20
作者 A.MOSLEMI M.R.HOMAEINEZHAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期141-158,共18页
Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt... Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon. 展开更多
关键词 VISCOELASTICITY Burgers model nonlinear energy sink(NES) saddle-node bifurcation hopf bifurcation
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部