In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of a...In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.展开更多
In this paper we give necessary and sufficient conditions for a comodule magma over a weak Hopf quasigroup to have a total integral,thus extending the theories developed in the Hopf algebra,weak Hopf algebra and non-a...In this paper we give necessary and sufficient conditions for a comodule magma over a weak Hopf quasigroup to have a total integral,thus extending the theories developed in the Hopf algebra,weak Hopf algebra and non-associative Hopf algebra contexts.From this result we also deduce a version of Maschke’s theorems for right(H,B)-Hopf triples associated to a weak Hopf quasigroup H and a right H-comodule magma B.展开更多
We introduce the notions of a four-angle Hopf quasimodule and an adjoint quasiaction over a Hopf quasigroup H in a,symmetric monoidal category C.li H possesses an adjoint quasiaction,we show that symmetric Yetter-Drin...We introduce the notions of a four-angle Hopf quasimodule and an adjoint quasiaction over a Hopf quasigroup H in a,symmetric monoidal category C.li H possesses an adjoint quasiaction,we show that symmetric Yetter-Drinfeld categories are trivial,and hence we obtain a braided monoidal category equivalence between the category of right Yetter-Drinfeld modules over H and the category of four-angle Hopf modules over H under some suitable conditions.展开更多
A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for t...A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.展开更多
Firstly,the notion of the left-left Yetter-Drinfeld quasicomodule M=(M,·,ρ)over a Hopf coquasigroup H is given,which generalizes the left-left Yetter-Drinfeld module over Hopf algebras.Secondly,the braided monoi...Firstly,the notion of the left-left Yetter-Drinfeld quasicomodule M=(M,·,ρ)over a Hopf coquasigroup H is given,which generalizes the left-left Yetter-Drinfeld module over Hopf algebras.Secondly,the braided monoidal category HHYDQCM is introduced and the specific structure maps are given.Thirdly,Sweedler's dual of infinite-dimensional Hopf algebras in HHYDQCM is discussed.It proves that if(B,mB,μB,ΔB,εB)is a Hopf algebra in HHYDQCM with antipode SB,then(B^0,(mB0)^op,εB^*,(ΔB0)^op,μB^*)is a Hopf algebra in HHYDQCM with antipode SB^*,which generalizes the corresponding results over Hopf algebras.展开更多
The condition of an algebra to be a Hopf algebra or a Hopf(co)quasigroup can be determined by the properties of Galois linear maps.For a bialgebra H,if it is unital and associative as an algebra and counital coassocia...The condition of an algebra to be a Hopf algebra or a Hopf(co)quasigroup can be determined by the properties of Galois linear maps.For a bialgebra H,if it is unital and associative as an algebra and counital coassociative as a coalgebra,then the Galois linear maps T1 and T2 can be defined.For such a bialgebra H,it is a Hopf algebra if and only if T1 is bijective.Moreover,T1^-1 is a right H-module map and a left H-comodule map(similar to T2).On the other hand,for a unital algebra(no need to be associative),and a counital coassociative coalgebra A,if the coproduct and counit are both algebra morphisms,then the sufficient and necessary condition of A to be a Hopf quasigroup is that T1 is bijective,and T1^-1 is left compatible with ΔT1-11^r and right compatible with mT1-1^l at the same time(The properties are similar to T2).Furthermore,as a corollary,the quasigroups case is also considered.展开更多
基金The National Natural Science Foundation of China( No. 10971188 )the Natural Science Foundation of Zhejiang Province(No.Y6110323)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C)Zhejiang Provincial Education Department Project (No.Y200907995)Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)
文摘In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.
基金supported by Ministerio de Economía y Competi-tividad(Spain),grant MTM2016-79661-P(AEI/FEDER,UE,support included).
文摘In this paper we give necessary and sufficient conditions for a comodule magma over a weak Hopf quasigroup to have a total integral,thus extending the theories developed in the Hopf algebra,weak Hopf algebra and non-associative Hopf algebra contexts.From this result we also deduce a version of Maschke’s theorems for right(H,B)-Hopf triples associated to a weak Hopf quasigroup H and a right H-comodule magma B.
基金supported by the National Natural Science Foundation of China(Grant No.11871144)the NNSF of Jiangsu Province(No.BK20171348)the Scientific Research Foundation of Nanjing Institute of Technology(No.YKJ202040).
文摘We introduce the notions of a four-angle Hopf quasimodule and an adjoint quasiaction over a Hopf quasigroup H in a,symmetric monoidal category C.li H possesses an adjoint quasiaction,we show that symmetric Yetter-Drinfeld categories are trivial,and hence we obtain a braided monoidal category equivalence between the category of right Yetter-Drinfeld modules over H and the category of four-angle Hopf modules over H under some suitable conditions.
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)the Natural Science Foundation of Jiangsu Province(No.BK20171348).
文摘A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)。
文摘Firstly,the notion of the left-left Yetter-Drinfeld quasicomodule M=(M,·,ρ)over a Hopf coquasigroup H is given,which generalizes the left-left Yetter-Drinfeld module over Hopf algebras.Secondly,the braided monoidal category HHYDQCM is introduced and the specific structure maps are given.Thirdly,Sweedler's dual of infinite-dimensional Hopf algebras in HHYDQCM is discussed.It proves that if(B,mB,μB,ΔB,εB)is a Hopf algebra in HHYDQCM with antipode SB,then(B^0,(mB0)^op,εB^*,(ΔB0)^op,μB^*)is a Hopf algebra in HHYDQCM with antipode SB^*,which generalizes the corresponding results over Hopf algebras.
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)the Natural Science Foundation of Jiangsu Province(No.BK20171348)
文摘The condition of an algebra to be a Hopf algebra or a Hopf(co)quasigroup can be determined by the properties of Galois linear maps.For a bialgebra H,if it is unital and associative as an algebra and counital coassociative as a coalgebra,then the Galois linear maps T1 and T2 can be defined.For such a bialgebra H,it is a Hopf algebra if and only if T1 is bijective.Moreover,T1^-1 is a right H-module map and a left H-comodule map(similar to T2).On the other hand,for a unital algebra(no need to be associative),and a counital coassociative coalgebra A,if the coproduct and counit are both algebra morphisms,then the sufficient and necessary condition of A to be a Hopf quasigroup is that T1 is bijective,and T1^-1 is left compatible with ΔT1-11^r and right compatible with mT1-1^l at the same time(The properties are similar to T2).Furthermore,as a corollary,the quasigroups case is also considered.