期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cohomology of Line Bundles on Hopf Surfaces
1
作者 刘伟明 苏简兵 魏文斌 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第2期305-311,共7页
Let X be a non-primary Hopf Surface with Abelian fundamental group π1 (X)(≌) Z Zm, L a line bundle on X, we give a formula for computing the dimension of cohomology H^q(X,Ω^P(L)) and the explicit results fo... Let X be a non-primary Hopf Surface with Abelian fundamental group π1 (X)(≌) Z Zm, L a line bundle on X, we give a formula for computing the dimension of cohomology H^q(X,Ω^P(L)) and the explicit results for non-primary exceptional Hopf surface. 展开更多
关键词 hopf surface COHOMOLOGY line bundle SECTIONS
下载PDF
COMPLEX HOPF BIFURCATION OF INTEGRAL SURFACES
2
作者 赵怀忠 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第4期348-366,共19页
The existence of the Hopf bifurcation of a complex ordinary differential equation system in the complex domain is studied in this paper by using the complex qualitative theory.In the complex domain,we conclude that th... The existence of the Hopf bifurcation of a complex ordinary differential equation system in the complex domain is studied in this paper by using the complex qualitative theory.In the complex domain,we conclude that the Hopf bifurcation appears for both directions of the parameter μ. The formulae of the Hopf bifurcation are also given in this paper. 展开更多
关键词 Re COMPLEX hopf BIFURCATION OF INTEGRAL surfaceS REAL hopf Pi
原文传递
Variational Structure and Uniqueness of Generalized Kähler-Ricci Solitons
3
作者 Vestislav Apostolov Jeffrey Streets Yury Ustinovskiy 《Peking Mathematical Journal》 CSCD 2023年第2期307-351,共45页
Under broad hypotheses we derive a scalar reduction of the generalized Kähler-Ricci soliton system.We realize solutions as critical points of a functional,analogous to the classical Aubin energy,defined on an orb... Under broad hypotheses we derive a scalar reduction of the generalized Kähler-Ricci soliton system.We realize solutions as critical points of a functional,analogous to the classical Aubin energy,defined on an orbit of the natural Hamiltonian action of diffeomorphisms,thought of as a generalized Kähler class.This functional is convex on a large set of paths in this space,and using this we show rigidity of solitons in their generalized Kähler class.As an application we prove uniqueness of the generalized Kähler-Ricci solitons on Hopf surfaces constructed in Streets and Ustinovskiy[Commun.Pure Appl.Math.74(9),1896-1914(2020)],finishing the classification in complex dimension 2. 展开更多
关键词 Generalized Ricci solitons hopf surfaces Poisson structures Aubin functional
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部