We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and res...We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues -- a signature of mode locking phenomenon are found.展开更多
In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington-DeAngelis functional response and...In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington-DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.展开更多
基金supported by a fellowship of the Alexander von Humboldt Foundation in Bonn, Germanythe Royal Society of London, British Academy and Physical Sciences Research Council, UK, under the Newton International Fellowship scheme.
文摘We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues -- a signature of mode locking phenomenon are found.
基金Acknowledgments The authors would like to thank the editors and the anonymous referees for their helpful suggestions and comments which led to the improvement of our original manuscript. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11561022, 11261017), the China Postdoctoral Science Foundation (Grant No. 2014M562008).
文摘In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington-DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.