In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of a...In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.展开更多
A idempotent quasigroup (Q, o) of order n is equivalent to an n(n-1)×3 partial orthogonal array in which all of rows consist of 3 distinct elements. Let X be a (n+1)-set. Denote by T(n+1) the set of (n+1)n(n-1) o...A idempotent quasigroup (Q, o) of order n is equivalent to an n(n-1)×3 partial orthogonal array in which all of rows consist of 3 distinct elements. Let X be a (n+1)-set. Denote by T(n+1) the set of (n+1)n(n-1) ordered triples of X with the property that the 3 coordinates of each ordered triple are distinct. An overlarge set of idempotent quasigroups of order n is a partition of T(n+1) into n+1 n(n-1)×3 partial orthogonal arrays A_x, x∈X based on X\{x}. This article gives an almost complete solution of overlarge sets of idempotent quasigroups.展开更多
A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for t...A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.展开更多
基金The National Natural Science Foundation of China( No. 10971188 )the Natural Science Foundation of Zhejiang Province(No.Y6110323)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Funds(No. 0902081C)Zhejiang Provincial Education Department Project (No.Y200907995)Qiantang Talents Project of Science Technology Department of Zhejiang Province (No. 2011R10051)
文摘In order to study algebraic structures of parallelizable sphere s7, the notions of quasimodules and biquasimodnle algebras over Hopf quasigroups, which are not required to be associative, are introduced. The lack of associativity of quasimodules is compensated for by conditions involving the antipode. The twisted smash product for Hopf quasigroups is constructed using biquasimodule algebras, which is a generalization of the twisted smash for Hopf algebras. The twisted smash product and tensor coproduct is turned into a Hopf quasigroup if and only if the following conditions (h1→a) h2 = (h2→a) h1, (a←S(h1)) h2 = (a←S(h2)) h1, hold. The obtained results generalize and improve the corresponding results of the twisted smash product for Hopf algebras.
基金Supported by NSFC grant No. 10371002 (Y. Chang) and No.19901008 (J. Lei)
文摘A idempotent quasigroup (Q, o) of order n is equivalent to an n(n-1)×3 partial orthogonal array in which all of rows consist of 3 distinct elements. Let X be a (n+1)-set. Denote by T(n+1) the set of (n+1)n(n-1) ordered triples of X with the property that the 3 coordinates of each ordered triple are distinct. An overlarge set of idempotent quasigroups of order n is a partition of T(n+1) into n+1 n(n-1)×3 partial orthogonal arrays A_x, x∈X based on X\{x}. This article gives an almost complete solution of overlarge sets of idempotent quasigroups.
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)the Natural Science Foundation of Jiangsu Province(No.BK20171348).
文摘A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.