In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old...In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.展开更多
In this paper we study the set of comultiplications on a wedge of two spheres. We are primarily interested in the size of this set and properties of the comultiplications such as associativity and commutativity. Our m...In this paper we study the set of comultiplications on a wedge of two spheres. We are primarily interested in the size of this set and properties of the comultiplications such as associativity and commutativity. Our methods involve Whitehead products in wedges of spheres and the Hopf-Hilton invariants. We apply our results to specific examples and determine the number of comultiplications, associative comultiplications and commutative comultiplications in these cases.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education,Science and Technology (2010-0022035)
文摘In this paper we study the properties of homotopy inverses of comultiplications and Mgebraic loops of co-H-spaces based on a wedge of spheres. We also investigate a method to construct new comultiplications out of old ones by using a group action. We are primarily interested in the algebraic loops which have inversive, power-associative and Moufang properties for some comultiplications.
文摘In this paper we study the set of comultiplications on a wedge of two spheres. We are primarily interested in the size of this set and properties of the comultiplications such as associativity and commutativity. Our methods involve Whitehead products in wedges of spheres and the Hopf-Hilton invariants. We apply our results to specific examples and determine the number of comultiplications, associative comultiplications and commutative comultiplications in these cases.