期刊文献+
共找到150,870篇文章
< 1 2 250 >
每页显示 20 50 100
一类含连续分布时滞的随机Hopfiled神经网络模型的几乎必然指数稳定性和p阶矩指数稳定性 被引量:4
1
作者 赵亮 李树勇 +1 位作者 张秀英 杜启凤 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期317-323,共7页
考虑一类含连续分布时滞的随机Hopfiled神经网络模型的几乎必然指数稳定性和p阶矩指数稳定性,借助创建Lyapunov函数和运用非负半鞅收敛定理得到了该网络模型平凡解几乎必然指数稳定和p阶矩指数稳定的充分条件,并通过2个例子,说明结果的... 考虑一类含连续分布时滞的随机Hopfiled神经网络模型的几乎必然指数稳定性和p阶矩指数稳定性,借助创建Lyapunov函数和运用非负半鞅收敛定理得到了该网络模型平凡解几乎必然指数稳定和p阶矩指数稳定的充分条件,并通过2个例子,说明结果的有效性. 展开更多
关键词 分布时滞 随机hopfiled神经网络模型 非负半鞅收敛定理 几乎必然指数稳定 p阶矩指数稳定
下载PDF
含混合时滞的随机Hopfiled神经网络的全局指数稳定性 被引量:4
2
作者 胡健 李树勇 杨治国 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期303-308,共6页
考虑一类含混合时滞的随机Hopfiled神经网络,运用Razumikin方法和不等式技巧得到了该网络平凡解的p阶指数稳定性,推广了一些已有的结果,并利用一个例子,说明结果的有效性.
关键词 随机hopfiled神经网络 混合时滞 Razumikin定理 全局指数稳定
下载PDF
基于Hopfiled神经网络进行机械系统优化的研究
3
作者 秦煜 郑晓雯 +2 位作者 杨现峰 李兴森 王增才 《煤矿机械》 2000年第5期9-11,共3页
在巧妙构造齿轮减速箱系统优化目标条件和约束条件的基础上 ,利用Hopfield神经网络对此系统进行了振动方面优化 ,获得了其优化设计计算公式 ,基本达到了减少系统的振动、延长系统工作时间的目的。
关键词 HOPFIELD神经网络 系统优化 机械振动 机械系统
下载PDF
基于Hopfiled神经网络的保险险种分类研究
4
作者 陈威冲 张嘉伟 吴银川 《信息记录材料》 2020年第2期109-111,共3页
针对当前保险产品品种繁多而普通民众无法对其实际功能进行判断的问题,本论文采用离散Hopfiled神经网络模型,收集当前市面上的几款保险产品,通过Matlab对模型进行训练,实现对于出现新型保险产品能对其进行分类鉴别的效果。仿真结果表明... 针对当前保险产品品种繁多而普通民众无法对其实际功能进行判断的问题,本论文采用离散Hopfiled神经网络模型,收集当前市面上的几款保险产品,通过Matlab对模型进行训练,实现对于出现新型保险产品能对其进行分类鉴别的效果。仿真结果表明该评价比较客观,对于分辨不同险种为资产的配置有一定的参考意义。 展开更多
关键词 离散HOPFIELD神经网络 保险 险种
下载PDF
基于小波降噪的神经网络盾构泥水分离系统参数预测方法
5
作者 周翠红 周富强 +1 位作者 刘兆赫 翟志国 《土木与环境工程学报(中英文)》 北大核心 2025年第1期11-17,共7页
泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技... 泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技术,采集盾构机掘进参数(掘进速度、刀盘转速和总推进力等)和泥水分离系统运行参数(进浆量、进浆密度和进浆黏度等),通过Cook距离离群检测和小波阈值去噪处理提升数据质量;以双旋流分离密度比值、黏度比值等12个参数为输入,排浆量、排浆密度和排浆黏度为输出,建立BP神经网络泥水分离系统参数的预测模型,并选取3个不同地层环段进行预测对比分析。预测结果表明:预测平均绝对误差均在5%以内,该预测模型在复合地层下仍具有较高的准确性。 展开更多
关键词 盾构隧道 泥水分离 COOK距离 小波去噪 BP神经网络 参数预测
下载PDF
基于改进神经网络的医院通信安全态势感知方法
6
作者 邓从香 《电子设计工程》 2025年第1期166-170,175,共6页
针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模... 针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模型。利用花朵授粉算法完成改进RBF神经网络训练。通过径向基函数对输入数据进行非线性变换,将得到的权值进行加权求和,得到当前通信网络信号的安全态势预测结果。实验结果显示,应用该文方法的医院通信网络异常信息可在1 s内完成感知。 展开更多
关键词 改进神经网络 医院通信 安全态势 小波消噪 信号去噪 花朵授粉算法
下载PDF
基于图卷积神经网络的WSN零动态攻击检测方法
7
作者 崔玉礼 黄丽君 《太原学院学报(自然科学版)》 2025年第1期78-84,共7页
零动态攻击与一般攻击方式相比,隐蔽性更强,因此更不容易被发现。以往常规的检测方法在检测这种攻击方式时,漏检率和误检率较高。针对上述问题,研究一种基于图卷积神经网络的WSN零动态攻击检测方法。基于零动态攻击原理,以信道状态信息... 零动态攻击与一般攻击方式相比,隐蔽性更强,因此更不容易被发现。以往常规的检测方法在检测这种攻击方式时,漏检率和误检率较高。针对上述问题,研究一种基于图卷积神经网络的WSN零动态攻击检测方法。基于零动态攻击原理,以信道状态信息作为采集源,利用CSI-Tools工具实现CSI数据包采集。从CSI数据包中分离出幅值数据和相位数据,针对前者实施去噪处理,针对后者实施校准处理。从幅值数据和相位数据中提取4个特征,以特征为输入,构建图结构,利用图卷积神经网络实现无线传感网络零动态攻击检测。结果表明:基于图卷积神经网络的攻击检测方法的漏检率和误检率相对更低,由此说明该方法对零动态攻击检测更为有效,能够实现更为准确的检测。 展开更多
关键词 图卷积神经网络 无线传感网络 CSI数据 零动态攻击
下载PDF
基于轻量化卷积神经网络的桥梁斜拉索PE护套损伤识别方法
8
作者 刘啸宇 黄永 +1 位作者 徐峰 李惠 《土木与环境工程学报(中英文)》 北大核心 2025年第1期167-178,共12页
深度神经网络和计算机视觉技术近年来在结构健康监测中发挥了越来越重要的作用。利用无人机航拍采集的桥梁斜拉索损伤图像数据,研究基于深度学习技术的斜拉索PE护套损伤识别方法。为实现在较低运算能力设备上对大跨度桥梁斜拉索表面局... 深度神经网络和计算机视觉技术近年来在结构健康监测中发挥了越来越重要的作用。利用无人机航拍采集的桥梁斜拉索损伤图像数据,研究基于深度学习技术的斜拉索PE护套损伤识别方法。为实现在较低运算能力设备上对大跨度桥梁斜拉索表面局部损伤的智能快速识别,解决传统深度卷积神经网络的运算效率相对较低、模型参数规模较大的问题,提出轻量化处理的区域推荐型卷积神经网络模型。介绍区域推荐网络与其轻量化改进方法的理论基础,分析轻量化模型处理的必要性,其能在保证识别精度的前提下降低模型训练与预测的设备性能需求,达到节约计算资源与时间的目的;通过数据增广等多手段解决损伤样本数据量不足的问题,设置对比试验,统计分析结果,验证了轻量化神经网络模型的优越性。结果表明,轻量化网络在牺牲少量识别准确度的前提下,能够在较大程度上实现对模型复杂度与计算量的改进,在工程应用中能有效拓展神经网络的实用性。 展开更多
关键词 桥梁斜拉索 智能损伤识别 轻量化神经网络 计算机视觉 深度学习
下载PDF
基于图像处理和BP神经网络的森林防火无人机系统
9
作者 杨静 《农机化研究》 北大核心 2025年第2期205-209,共5页
对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时... 对无人机设计方案、图像处理和火焰分割算法的技术原理进行了介绍,并利用BP神经网络对图像中的火焰面积变化率和火焰尖角等特征进行识别,实现了对森林火灾的快速监测。实验结果表明:系统的准确率为98.5%,比普通神经网络的84.5%更高;耗时仅22 s,比普通神经网络159 s缩短很多。这表明,BP神经网络是更可靠且更有效率的火灾识别方案。 展开更多
关键词 森林防火 无人机 图像处理 BP神经网络
下载PDF
基于改进WOA-BP神经网络的电气火灾预警算法
10
作者 颜磊 王国兵 +2 位作者 翁旭峰 刘雪莹 江友华 《电子设计工程》 2025年第1期21-26,共6页
电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和... 电气火灾是一种严重危害人员安全和财产损失的事件,因此增强对电气火灾的早期预测和预警至关重要。基于提高电气火灾预测准确性的目的,采用了改进鲸鱼算法优化BP神经网络的方法,构建了电气火灾预警模型。使用剩余电流、工作电流电压和线缆温度作为神经网络的输入特征,结合上述改进方法对权值和阈值进行优化。优化后的参数作为初始参数进行模型训练,用于输出电气火灾的概率。采用电气柜中回路数据进行试验,将预测概率与剩余电流异常持续时间进行模糊化处理,得出火灾决策。研究结果表明,所提模型相关系数达到0.97,相较于传统方法提高了0.08,具有更高的准确性和可靠性。 展开更多
关键词 电气火灾预警 鲸鱼优化算法 BP神经网络 模糊化
下载PDF
基于注意力循环神经网络的联合深度推荐模型
11
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
下载PDF
基于PSO-BP神经网络的5G基站位置确定方法
12
作者 杜莹 韦原原 蒲欢欢 《测绘工程》 2025年第1期47-52,67,共7页
5G基站位置的确定对室内定位服务和网络安全有着重要意义。首先对5G信道状态信息CSI进行Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立5G CSI和距离的映射关系,最后基于模型预测的距离实现对5G... 5G基站位置的确定对室内定位服务和网络安全有着重要意义。首先对5G信道状态信息CSI进行Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立5G CSI和距离的映射关系,最后基于模型预测的距离实现对5G AP的探测。实验采用室外探测室外和室内5G AP的实测数据,结果表明,与BP神经网络相比,基于PSO-BP神经网络的距离预测值更加精确,室外探测室外和室内5G AP的精度分别达到了0.32 m和0.96 m。随着测量方向数的提升,5G AP的定位精度不断提升。当方向数达到5个时,精度提升最为显著。 展开更多
关键词 信道状态信息 AP探测 粒子群优化 BP神经网络
下载PDF
基于改进卷积神经网络的机器人避障路径规划
13
作者 王思越 宋骊颖 刘俊森 《电子设计工程》 2025年第1期27-30,35,共5页
由于机器人在运动过程中,无法及时更新机器人位置方向和坐标,使得目标不是全局最小点,导致机器人无法有效避障。为此,提出了基于改进卷积神经网络的机器人避障路径规划方法。使用基于改进卷积神经网络的双线性内插方法,计算目标点坐标... 由于机器人在运动过程中,无法及时更新机器人位置方向和坐标,使得目标不是全局最小点,导致机器人无法有效避障。为此,提出了基于改进卷积神经网络的机器人避障路径规划方法。使用基于改进卷积神经网络的双线性内插方法,计算目标点坐标。通过动态窗口法评估函数,计算扩展距离。构建极大值损失函数,通过递减学习,使类别内的特征聚合度和类别间差异性达到最大。通过机器人在环境中的运动来估计机器人位置,计算机器人的平移速度、角速度,并更新机器人位置方向和坐标。构建改进后排斥函数,计算神经元中心点到目标神经元中心点的距离,规划避障路径。实验结果表明,该方法能够避过全部障碍物,且规划的起始点和目标点之间距离与实际距离一致。 展开更多
关键词 改进卷积神经网络 机器人避障 路径规划 全局最小点
下载PDF
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
14
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 短时客流预测 改进麻雀搜索算法 长短时记忆神经网络 组合模型
下载PDF
基于图卷积神经网络的节点分类方法研究综述 被引量:5
15
作者 张丽英 孙海航 +1 位作者 孙玉发 石兵波 《计算机科学》 CSCD 北大核心 2024年第4期95-105,共11页
节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经... 节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经网络的优点,已成为图节点分类方法中最活跃的一个研究分支。对基于图卷积神经网络的节点分类方法的研究进展进行综述,首先介绍图的相关概念、节点分类的任务定义和常用的图数据集;然后探讨两类经典图卷积神经网络——谱域和空间域图卷积神经网络,以及图卷积神经网络在节点分类领域面临的挑战;之后从模型和数据两个视角分析图卷积神经网络在节点分类任务中的研究成果和未解决的问题;最后对基于图卷积神经网络的节点分类研究方向进行展望,并总结全文。 展开更多
关键词 图数据 节点分类 神经网络 图卷积神经网络
下载PDF
基于小波变换和GA-BP神经网络的电力电缆故障定位 被引量:3
16
作者 徐先峰 马志雄 +2 位作者 姚景杰 李芷菡 王轲 《电气工程学报》 CSCD 北大核心 2024年第2期146-155,共10页
由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程... 由于电力电缆敷设于地下,当发生故障时难以快速且准确定位,出现了故障定位问题。因此,提出一种基于小波变换和遗传算法反向传播(Genetic algorithm back propagation,GA-BP)神经网络的电力电缆故障定位方法,在分析对比各小波能量集中程度和波动次数的基础上,选择多贝西小波(Daubechies wavelet 6,Db6)作为小波基函数,对于各故障位置,采集正向故障行波的α模分量,并对其进行小波分解。选取在d1尺度下的模极大值点作为特征值,同时将故障距离作为标签值,从而构建了训练和测试样本数据集;利用遗传算法(Genetic algorithm,GA)的种群进化和全局最优搜寻能力来改善误差逆传播(Back propagation,BP)网络对初始权重敏感的缺点,并使用优化后的权值、阈值重新对BP神经网络进行训练和预测,最后通过与传统双端行波定位算法、BP算法、粒子群优化BP算法(Particle swarm optimization BP,PSO-BP)相比较,证明了所提方法在测距性能方面的优越性。 展开更多
关键词 小波变换 模极大值 双端测距 BP神经网络 PSO-BP神经网络 GA-BP神经网络
下载PDF
基于神经算子与类物理信息神经网络智能求解新进展 被引量:2
17
作者 李道伦 沈路航 +7 位作者 查文舒 邢燕 吕帅君 汪欢 李祥 郝玉祥 陈东升 陈恩源 《力学学报》 EI CAS CSCD 北大核心 2024年第4期875-889,共15页
深度学习通过多层神经网络对数据进行学习,不仅能揭示潜藏信息,还能很好地解决复杂非线性问题.偏微分方程(PDE)是描述自然界中许多物理现象的基本数学模型.两者的碰撞与融合,产生了基于深度学习的PDE智能求解方法,它具有高效、灵活和通... 深度学习通过多层神经网络对数据进行学习,不仅能揭示潜藏信息,还能很好地解决复杂非线性问题.偏微分方程(PDE)是描述自然界中许多物理现象的基本数学模型.两者的碰撞与融合,产生了基于深度学习的PDE智能求解方法,它具有高效、灵活和通用等优点.文章聚焦PDE智能求解方法,以是否求解单一问题为判定依据,把求解方法分为两类:神经算子方法和类物理信息神经网络(PINN)方法,其中神经算子方法用于求解一类具有相同数学特征的PDE问题,类PINN方法用于求解单一问题.对于神经算子方法,从数据驱动和物理约束两个方面展开介绍,分析研究现状并指出现有方法的不足.对于类PINN方法,首先介绍了基础PINN的3种改进方法 (基于数据优化、基于模型优化和基于领域知识优化),然后详细介绍了基于物理驱动的两类解决方案:基于传统PDE离散方程的智能求解方案和无网格的非离散求解方案.最后总结技术路线,探讨现有研究存在的不足,给出可行的研究方案.最后,简要介绍智能求解程序发展现状,并对未来研究方向给出建议. 展开更多
关键词 神经网络 PDE智能求解 神经算子 网格离散 物理驱动
下载PDF
基于物理信息神经网络的金属表面吸收率测量方法 被引量:1
18
作者 方波浪 武俊杰 +5 位作者 王晟 吴振杰 李天植 张洋 杨鹏翎 王建国 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期145-152,共8页
漫反射金属吸收率的准确测量十分重要且比较困难.量热法可靠性较高,但是参数反演较为困难.为此,建立了一种物理信息神经网络方法.该方法通过神经网络拟合温度上升段曲线,进而获得吸收率.为了验证该方法,开展了数值仿真和实验研究.数值... 漫反射金属吸收率的准确测量十分重要且比较困难.量热法可靠性较高,但是参数反演较为困难.为此,建立了一种物理信息神经网络方法.该方法通过神经网络拟合温度上升段曲线,进而获得吸收率.为了验证该方法,开展了数值仿真和实验研究.数值仿真结果表明,该方法适用于吸收率测量,抗干扰能力强,反演精度高,在0.05—0.2的吸收率范围内,最大误差为0.00092.实验以喷砂镀金铝板为被测对象,受表面粗糙度、镀金工艺等影响,这些样品的吸收率处于2%—10%之间,测量重复精度优于1%.基于物理信息神经网络的吸收率测量方法有望成为一种有力的金属表面吸收率测量方法. 展开更多
关键词 测量方法和设备 光学性能 神经网络
下载PDF
基于多尺度特征深度神经网络的不同产地山楂细粒度图像识别 被引量:1
19
作者 谭超群 秦中翰 +4 位作者 黄欣然 陈虎 黄永亮 吴纯洁 游志胜 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期107-118,共12页
中药是中医治疗疾病的主要途径,也是我国中医药事业传承与创新发展的物质基础,其真伪优劣也会直接影响中医临床的疗效,因此研究科学合理且高效的中药材质量检测方法符合当前行业热点.山楂作为中国著名的药食两用类药材,在烹饪和治疗中... 中药是中医治疗疾病的主要途径,也是我国中医药事业传承与创新发展的物质基础,其真伪优劣也会直接影响中医临床的疗效,因此研究科学合理且高效的中药材质量检测方法符合当前行业热点.山楂作为中国著名的药食两用类药材,在烹饪和治疗中具有保护心血管、降低血压的作用,被广泛应用;但由于自然环境与栽培条件的不同,不同产地的山楂易被混淆从而对品质产生影响.尽管化学、生物鉴定的方法广泛而重要,但专业门槛高,耗时较长;且传统图像处理方法容易受外在环境因素干扰,可靠性差.因此亟待研究快速准确的方法以实现山楂产地的精准鉴别;受CoAtNet与Swin-Transformer网络启发,本文结合MBConv模块中深度可分离卷积网络对局部信息建模的特点与Swin Transformer模块多层次结构可弥补网络非局部性损失的特性,提出一种多尺度特征的混合神经网络模型,通过获取图像不同层级特征,将获取的形状、颜色与纹理等浅层特征作为先验知识与高层级语义信息进行特征融合,研究了一种快速有效的识别方法以实现对不同产地山楂的有效鉴别;此外,本文提出一种新的局部空间注意力机制,通过形成通道注意力模块联合空间注意力模块的新结构,实现对图像细粒度特征的聚焦与学习.实验结果表明,本文所提出的方法有最高的鉴别准确率为89.306%,优于其他基线模型.实践证明,本文的研究提高中药材鉴别的科技水平,拓宽传统中医药的研究思路. 展开更多
关键词 多尺度特征 神经网络 山楂 细粒度识别
下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:3
20
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 ELMAN神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部