For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated back...For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated background and current frame is obtained by using background subtraction, and then an edge-based shadow removal algorithm is implemented. Moreover, a tbresholding segmentation method for the region detection of moving vehicle based on lo- cation search is developed. At the estimation stage, a registration line is set up in the detection area, then the vehicle length is estimated with the horizontal projection technique as soon as the vehicle leaves the registration line. Lastly, the vehicle is classified according to its length and the classification threshold. The proposed method is different from traditional methods that require complex camera calibrations. It calculates the pixel-based vehicle length by using uncalibrated traffic video sequences at lower computational cost. Furthermore, only one registration line is set up, which has high flexibility. Experimental results of three traffic video sequences show that the classification accuracies for the large and small vehicles are 97.1% and 96.7% respectively, which demonstrates the effectiveness of the proposed method.展开更多
Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location ...Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.展开更多
Although important progresses have been already made in face detection,many false faces can be found in detection results and false detection rate is influenced by some factors,such as rotation and tilt of human face,...Although important progresses have been already made in face detection,many false faces can be found in detection results and false detection rate is influenced by some factors,such as rotation and tilt of human face,complicated background,illumination,scale,cloak and hairstyle.This paper proposes a new method called DP-Adaboost algorithm to detect multi-angle human face and improve the correct detection rate.An improved Adaboost algorithm with the fusion of frontal face classifier and a profile face classifier is used to detect the multi-angle face.An improved horizontal differential projection algorithm is put forward to remove those non-face images among the preliminary detection results from the improved Adaboost algorithm.Experiment results show that compared with the classical Adaboost algorithm with a frontal face classifier,the textual DP-Adaboost algorithm can reduce false rate significantly and improve hit rate in multi-angle face detection.展开更多
基金Supported by Key Natural Science Foundation of Hebei Education Department (No.ZD200911)Technology R&D Program of Hebei Province(No.11213518d)
文摘For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated background and current frame is obtained by using background subtraction, and then an edge-based shadow removal algorithm is implemented. Moreover, a tbresholding segmentation method for the region detection of moving vehicle based on lo- cation search is developed. At the estimation stage, a registration line is set up in the detection area, then the vehicle length is estimated with the horizontal projection technique as soon as the vehicle leaves the registration line. Lastly, the vehicle is classified according to its length and the classification threshold. The proposed method is different from traditional methods that require complex camera calibrations. It calculates the pixel-based vehicle length by using uncalibrated traffic video sequences at lower computational cost. Furthermore, only one registration line is set up, which has high flexibility. Experimental results of three traffic video sequences show that the classification accuracies for the large and small vehicles are 97.1% and 96.7% respectively, which demonstrates the effectiveness of the proposed method.
文摘Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.
文摘Although important progresses have been already made in face detection,many false faces can be found in detection results and false detection rate is influenced by some factors,such as rotation and tilt of human face,complicated background,illumination,scale,cloak and hairstyle.This paper proposes a new method called DP-Adaboost algorithm to detect multi-angle human face and improve the correct detection rate.An improved Adaboost algorithm with the fusion of frontal face classifier and a profile face classifier is used to detect the multi-angle face.An improved horizontal differential projection algorithm is put forward to remove those non-face images among the preliminary detection results from the improved Adaboost algorithm.Experiment results show that compared with the classical Adaboost algorithm with a frontal face classifier,the textual DP-Adaboost algorithm can reduce false rate significantly and improve hit rate in multi-angle face detection.