期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Solidification of horizontally continuous casting of super-thin slab in stable magnetic field and alternating current 被引量:3
1
作者 张小伟 黄锦峰 +1 位作者 邓康 任忠鸣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期196-201,共6页
The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action ... The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab. 展开更多
关键词 horizontally continuous casting(HCC) super-thin slab electromagnetic vibration(EMV) SOLIDIFICATION
下载PDF
Analysis of inhomogeneity of solidified microstructure of continuous casting copper tubular billet based on factor analysis
2
作者 Jin-song Liu Chao-rui Shan +3 位作者 Da-yong Chen Hong-wu Song Chuan-lai Chen Yun-yue Chen 《China Foundry》 SCIE EI CAS CSCD 2023年第6期526-536,共11页
The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous cast... The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted. 展开更多
关键词 TP2 copper tubular billet horizontal continuous casting factor analysis microstructure inhomogeneity of casting billet quality diagnosis
下载PDF
Horizontal continuous casting process under electromagnetic field for preparing AA3003/AA4045 clad composite hollow billets 被引量:7
3
作者 武立 康慧君 +2 位作者 陈宗宁 刘宁 王同敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2675-2685,共11页
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc... A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted. 展开更多
关键词 aluminum alloy clad composite hollow billet horizontal continuous casting electromagnetic stirring numerical simulation
下载PDF
Microstructure and properties of Al-0.70Fe-0.24Cu alloy conductor prepared by horizontal continuous casting and subsequent continuous extrusion forming 被引量:6
4
作者 张晓苑 张辉 +1 位作者 孔祥鑫 傅定发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1763-1769,共7页
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri... A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases. 展开更多
关键词 A1-0.70Fe-0.24Cu alloy horizontal continuous casting continuous extrusion forming MICROSTRUCTURE PROPERTY
下载PDF
Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars 被引量:7
5
作者 Chun-jie Xu Pan Dai +3 位作者 Zheng-yang Zhang Zhong-ming Zhang Jin-cheng Wang Yong-hui Liu 《China Foundry》 SCIE CAS 2015年第2期104-110,共7页
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ... In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 &#176;C and 135 min, and austempering temperature and time are 279 &#176;C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively. 展开更多
关键词 horizontal continuous casting (HCC) ductile iron dense bars austempered ductile iron (ADI) microstructure and mechanical properties orthogonal test
下载PDF
Nu m erical Sim ulation of Tem perature Field of Copper and Copper Alloy in Horizontal Continuous Casting 被引量:6
6
作者 谢水生 谢文华 黄声宏 《Rare Metals》 SCIE EI CAS CSCD 1999年第3期195-201,共7页
To investigate the temperature distribution and solidification shell profile in a continuous casting process for round bars, transient mathematical models have been developed to describe the thermal process. Then Fini... To investigate the temperature distribution and solidification shell profile in a continuous casting process for round bars, transient mathematical models have been developed to describe the thermal process. Then Finite Element Method (FEM) has been applied to simulate the solidification process. Parameters including casting speed, casting temperature and cooling conditions have been analyzed. It is shown that different parameters have different influence on the thermal process and must be carefully controlled in continuous casting process. Finally, the simulated results are compared with the experimental ones. 展开更多
关键词 horizontal continuous casting temperature field numerical simulation
下载PDF
Effect of low-frequency rotary electromagnetic-field on solidification structure of continuous casting austenitic stainless steel 被引量:3
7
作者 周书才 白晨光 +3 位作者 雷亚 任正德 曹鹏军 杨治立 《Journal of Central South University》 SCIE EI CAS 2009年第3期360-364,共5页
To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless ... To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density. 展开更多
关键词 horizontal continuous casting austenitic stainless steel electromagnetic stirring equiaxed grains central porosity
下载PDF
Microstructure evolution and mechanical properties of Cu-0.36Be-0.46Co alloy fabricated by heating-cooling combined mold horizontal continuous casting during cold rolling 被引量:3
8
作者 Yan-bin JIANG Tong-tong ZHANG +6 位作者 Yu LEI Xin-hua LIU Yang CAO Jian-xin XIE Bing ZHAO Yong-hua LI Chuan-rong JIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期958-971,共14页
Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical... Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical properties of the alloy as well as its deformation mechanism were investigated. The results showed that the as-cast alloy plate had columnar grains along the length direction, good surface quality and elongation of 35%, which was directly large-reduction cold rolled without surface treatment, and the accumulative cold rolling reduction reached 98%. When the reduction was small(20%), numerous dislocations and dislocation cells formed, and the deformation mechanism was dislocation slip. When the reduction was 40%, deformation twins appeared, and interactions between twins and dislocation cells induced strip-like dislocation cells. When the reduction exceeded 60%, shear bands formed and apparent crystal rotation in the micro-region happened. Further increasing the reduction, the amount of the shear bands rose and they interacted with each other, which refined the grains apparently. The tensile strength and hardness increased from 353 MPa and HV 119 of the as-cast alloy to 625 MPa and HV 208 with 95% reduction, respectively, and the elongation reduced from 35% to 7.6%. A process of HCCM horizontal continuous casting-cold rolling can work as a novel compact method to fabricate Cu-Be alloy sheet. 展开更多
关键词 HCCM horizontal continuous casting copper-beryllium alloy ROLLING microstructure mechanical properties
下载PDF
Hot compressive deformation of eutectic Al-17at%Cu alloy on the interface of the Cu-Al composite plate produced by horizontal continuous casting 被引量:1
9
作者 Jun Wang Fan Zhao +2 位作者 Guoliang Xie Jiaxuan Xu Xinhua Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1578-1588,共11页
On the interface of the Cu-Al composite plate from horizontal continuous casting,the eutectic microstructure layer thickness ac-counts for more than 90%of the total interface thickness,and the deformation in rolling f... On the interface of the Cu-Al composite plate from horizontal continuous casting,the eutectic microstructure layer thickness ac-counts for more than 90%of the total interface thickness,and the deformation in rolling forming plays an important role in the quality of the composite plate.The eutectic microstructure material on the interface of the Cu-Al composite plate was prepared by changing the cooling rate of ingot solidification and the deformation in hot compression was investigated.The results show that when the deformation temperature is over 300℃,the softening effect of dynamic recrystallization ofα-Al is greater than the hardening effect,and uniform plastic deformation of eutectic microstructure is caused.The constitutive equation of flow stress in the eutectic microstructure layer was established by Arrhenius hy-perbolic-sine mathematics model,providing a reliable theoretical basis for the deformation of the Cu-Al composite plate. 展开更多
关键词 horizontal continuous casting copper-aluminium composite plate composite interface eutectic microstructure material hot de-formation experiments constitutive equation
下载PDF
Thermal Stress Model of Solidified Shell for Horizontal Continuous Casting Billet
10
作者 SHAO Lu CAI Kai Ke +1 位作者 LIU Xin Hua LI Shuan Lu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1994年第1期19-24,共6页
In order to quantify the understanding of crack formation in Horizontal Continuous Casting billet.the two-dimensional unsteady state mathematical model for heat transfer and elas-toplastic stress model have been estab... In order to quantify the understanding of crack formation in Horizontal Continuous Casting billet.the two-dimensional unsteady state mathematical model for heat transfer and elas-toplastic stress model have been established.Using these models to calculate the thermal stress which occurred both during surface reheating of 150× 150 mm billet which is just taken out of mold and during temperature drop in billet centre near the end of solidification,the reasonable crack formation criteria for about 0.45%carbon steel have been proposed as follows:In high temperature brittle zone higher than 1300℃,the critical tensile strength is about 170-390 N/cm^2,the critical strain to fracture is about 0.10%- 0.24%. 展开更多
关键词 horizontal continuous casting SOLIDIFICATION thermal stress model.
下载PDF
Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting
11
作者 ZHOU Shu-cai LI Hua-ji +3 位作者 RAO Jin-song REN Zheng-de ZHANG Jie-xin YANG Zhi-li 《China Foundry》 SCIE CAS 2007年第3期198-201,共4页
An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried ou... An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer. 展开更多
关键词 horizontal continuous casting austenitic stainless steel electromagnetic stirring equiaxal grain center porosity
下载PDF
Microstructure and properties of LZQT600-3 HCCDIBs for plunger pump cylinder
12
作者 Chun-jie Xu Yuan-ying Jin +8 位作者 Dong Ma Zhen Zhao Jia-wei Qi Shang Sui Xiang-quan Wu Can Guo Zhong-ming Zhang Yong-hui Liu Dan Shechtman 《China Foundry》 SCIE EI CAS CSCD 2024年第2期197-204,共8页
It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,th... It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder. 展开更多
关键词 horizontal continuous casting(HCC) nodular cast iron ductile iron bars microstructure mechanical properties
下载PDF
COMPUTER CONTROL SYSTEM FOR DRAWING MACHINE IN HORIZONTAL CONTINUOUS CAST SET
13
作者 Zheng Xiaoming Yu Shouyi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1996年第1期147-152,共6页
A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface ci... A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface circuit for stroke measurements were given out.An effective method was provided,which made the process parameters progressively optimize under the software environment using friendly interface of person-and-computer communication.This method was also adaptable to optimize parameters of other production process which are hard to model. 展开更多
关键词 horizontal continuous cast drawing machine drawing parameters OPTIMIZATION
下载PDF
Preparation of 3003/4045 Cladding Hollow Billets by Horizontal Electromagnetic Continuous Casting
14
作者 LIU Ning ZHANG Peng-chao +3 位作者 JIE Jin-chuan CAO Zhi-qiang WANG Tong-min LI Ting-ju 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期896-899,共4页
The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and micros... The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and microstructures of the bonding interface are observed.The results show that cladding hollow billets combine the external and internal layers by metallurgical bonding without mixing when the pouring temperature of the external liquid metal is 903 K.The diffusion region with the thickness of 25 μm can be seen clearly,where mutual diffusion of Si and Mn atoms takes place. In addition,the intermetallic compound Al_(12)(FeMn)_3Si_2 is formed in the interface. 展开更多
关键词 3003/4045 clading hollow billets Horizontal electromagnetic continuous casting INTERFACE
原文传递
The Effect of the Combination of Electromagnetic Field on the Surface Quality and Inner Structure of HDC Casting Al 3004 Ingot
15
作者 ZHU Qing-feng ZHAO Zhi-hao +2 位作者 ZUO Yu-bo WANG Xiang-jie CUI Jian-zhong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S1期322-326,共5页
The combination of electromagnetic field is applied in the Horizontal Direct Chill(HDC)casting process to produce 3004 aluminum alloy ingot.The effect of combination of electromagnetic field on the ingot surface quali... The combination of electromagnetic field is applied in the Horizontal Direct Chill(HDC)casting process to produce 3004 aluminum alloy ingot.The effect of combination of electromagnetic field on the ingot surface quality and inner structure was investigated by macro and micro-structure observation.The results show that the combination of electromagnetic field can improve the ingot surface quality and inner structure effectively.The thickness of segregation layer decreased with the application of combination of electromagnetic field.In addition,the combination of electromagnetic field can effectively improve the as-casting structure.Under the function of combination of electromagnetic field,coarse columnar grains transfer to fine equiaxed grains. 展开更多
关键词 combination electromagnetic field 3004 aluminum alloy horizontal continuous casting as-cast structure surface quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部