The reciprocal relationship between mental and physical health is well established.Undiagnosed,untreated,and poorly managed mental health conditions are associated with numerous physical health complications,poor trea...The reciprocal relationship between mental and physical health is well established.Undiagnosed,untreated,and poorly managed mental health conditions are associated with numerous physical health complications,poor treatment adherence,and decreased quality of life.Despite growing evidence regarding the importance of effectively addressing these conditions in primary care,the rates of identification remain low and follow-up and management by primary care providers has been criticized.The objective of this review was to demonstrate the role of Patient-Centered Medical Home(PCMH)and mental health integration in addressing comprehensive health care needs in primary care patients,and to describe common barriers and facilitators to the implementation of these types of programs.展开更多
In a prior practice and policy article published in Healthcare Science,we introduced the deployed application of an artificial intelligence(AI)model to predict longer‐term inpatient readmissions to guide community ca...In a prior practice and policy article published in Healthcare Science,we introduced the deployed application of an artificial intelligence(AI)model to predict longer‐term inpatient readmissions to guide community care interventions for patients with complex conditions in the context of Singapore's Hospital to Home(H2H)program that has been operating since 2017.In this follow on practice and policy article,we further elaborate on Singapore's H2H program and care model,and its supporting AI model for multiple readmission prediction,in the following ways:(1)by providing updates on the AI and supporting information systems,(2)by reporting on customer engagement and related service delivery outcomes including staff‐related time savings and patient benefits in terms of bed days saved,(3)by sharing lessons learned with respect to(i)analytics challenges encountered due to the high degree of heterogeneity and resulting variability of the data set associated with the population of program participants,(ii)balancing competing needs for simpler and stable predictive models versus continuing to further enhance models and add yet more predictive variables,and(iii)the complications of continuing to make model changes when the AI part of the system is highly interlinked with supporting clinical information systems,(4)by highlighting how this H2H effort supported broader Covid‐19 response efforts across Singapore's public healthcare system,and finally(5)by commenting on how the experiences and related capabilities acquired from running this H2H program and related community care model and supporting AI prediction model are expected to contribute to the next wave of Singapore's public healthcare efforts from 2023 onwards.For the convenience of the reader,some content that introduces the H2H program and the multiple readmissions AI prediction model that previously appeared in the prior Healthcare Science publication is repeated at the beginning of this article.展开更多
文摘The reciprocal relationship between mental and physical health is well established.Undiagnosed,untreated,and poorly managed mental health conditions are associated with numerous physical health complications,poor treatment adherence,and decreased quality of life.Despite growing evidence regarding the importance of effectively addressing these conditions in primary care,the rates of identification remain low and follow-up and management by primary care providers has been criticized.The objective of this review was to demonstrate the role of Patient-Centered Medical Home(PCMH)and mental health integration in addressing comprehensive health care needs in primary care patients,and to describe common barriers and facilitators to the implementation of these types of programs.
文摘In a prior practice and policy article published in Healthcare Science,we introduced the deployed application of an artificial intelligence(AI)model to predict longer‐term inpatient readmissions to guide community care interventions for patients with complex conditions in the context of Singapore's Hospital to Home(H2H)program that has been operating since 2017.In this follow on practice and policy article,we further elaborate on Singapore's H2H program and care model,and its supporting AI model for multiple readmission prediction,in the following ways:(1)by providing updates on the AI and supporting information systems,(2)by reporting on customer engagement and related service delivery outcomes including staff‐related time savings and patient benefits in terms of bed days saved,(3)by sharing lessons learned with respect to(i)analytics challenges encountered due to the high degree of heterogeneity and resulting variability of the data set associated with the population of program participants,(ii)balancing competing needs for simpler and stable predictive models versus continuing to further enhance models and add yet more predictive variables,and(iii)the complications of continuing to make model changes when the AI part of the system is highly interlinked with supporting clinical information systems,(4)by highlighting how this H2H effort supported broader Covid‐19 response efforts across Singapore's public healthcare system,and finally(5)by commenting on how the experiences and related capabilities acquired from running this H2H program and related community care model and supporting AI prediction model are expected to contribute to the next wave of Singapore's public healthcare efforts from 2023 onwards.For the convenience of the reader,some content that introduces the H2H program and the multiple readmissions AI prediction model that previously appeared in the prior Healthcare Science publication is repeated at the beginning of this article.