The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide,with the pathogenesis mostly unclear.Both virus and host-derived microRNA(miRNA)play essential roles in the pathology of virus infection.This study ...The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide,with the pathogenesis mostly unclear.Both virus and host-derived microRNA(miRNA)play essential roles in the pathology of virus infection.This study aims to uncover the mechanism for SARS-CoV-2 pathogenicity from the perspective of miRNA.We scanned the SARS-CoV-2 genome for putative miRNA genes and miRNA targets and conducted in vivo experiments to validate the virus-encoded miRNAs and their regulatory role on the putative targets.One of such virus-encoded miRNAs,MR147-3p,was overexpressed that resulted in significantly decreased transcript levels of all of the predicted targets in human,i.e.,EXOC7,RAD9A,and TFE3 in the virus-infected cells.The analysis showed that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs.Additionally,the genomic mutation of SARS-CoV-2 contributed to the changed miRNA repository and targets,suggesting a possible role of miRNAs in the attenuated phenotype of SARS-CoV-2 during its evolution.This study provided a comprehensive view of the miRNA-involved regulatory system during SARS-CoV-2 infection,indicating possible antiviral therapeutics against SARS-CoV-2 through intervening miRNA regulation.展开更多
Sepsis is a life-threatening condition that is characterized by multiple organ dysfunction due to abnormal host response to various pathogens,like bacteria,fungi and virus.The differences between viral and bacterial s...Sepsis is a life-threatening condition that is characterized by multiple organ dysfunction due to abnormal host response to various pathogens,like bacteria,fungi and virus.The differences between viral and bacterial sepsis are indeed of great significance to deepen the understanding of the pathogenesis of sepsis,especially under pandemics of SARS-CoV-2 infection.展开更多
Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumoni...Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.展开更多
基金This work was supported by National Natural Science Foundation of China(NSFC)grant No.81671983 and 81871628 to X.L.,NSFC grant No.81703306China Postdoctoral Science Foundation(2017M611867)+1 种基金Postdoctoral Science Foundation of Jiangsu Province(1701119C)to Z.L.,NSFC grant No.81902027Natural Science Foundation of Jiangsu Province to J.W.(BK20171045).
文摘The outbreak of COVID-19 caused by SARS-CoV-2 is spreading worldwide,with the pathogenesis mostly unclear.Both virus and host-derived microRNA(miRNA)play essential roles in the pathology of virus infection.This study aims to uncover the mechanism for SARS-CoV-2 pathogenicity from the perspective of miRNA.We scanned the SARS-CoV-2 genome for putative miRNA genes and miRNA targets and conducted in vivo experiments to validate the virus-encoded miRNAs and their regulatory role on the putative targets.One of such virus-encoded miRNAs,MR147-3p,was overexpressed that resulted in significantly decreased transcript levels of all of the predicted targets in human,i.e.,EXOC7,RAD9A,and TFE3 in the virus-infected cells.The analysis showed that the immune response and cytoskeleton organization are two of the most notable biological processes regulated by the infection-modulated miRNAs.Additionally,the genomic mutation of SARS-CoV-2 contributed to the changed miRNA repository and targets,suggesting a possible role of miRNAs in the attenuated phenotype of SARS-CoV-2 during its evolution.This study provided a comprehensive view of the miRNA-involved regulatory system during SARS-CoV-2 infection,indicating possible antiviral therapeutics against SARS-CoV-2 through intervening miRNA regulation.
基金supported by the National Natural Science Foundation of China(81730057 by YMY,81801935 by CR)Sanming Project of Medicine in Shenzhen(SZSM20162011 by YMY and YWF)the Military Medical Innovation Program of Chinese PLA(18CXZ026 by YMY)。
文摘Sepsis is a life-threatening condition that is characterized by multiple organ dysfunction due to abnormal host response to various pathogens,like bacteria,fungi and virus.The differences between viral and bacterial sepsis are indeed of great significance to deepen the understanding of the pathogenesis of sepsis,especially under pandemics of SARS-CoV-2 infection.
基金supported by the National Natural Science Foundation of China(No.81574025)the Open Project Program of Jiangsu Key Laboratory of Pediatric Respiratory Disease,Nanjing University of Chinese Medicine(No.JKLPRD201410)
文摘Respiratory syncytial virus(RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid(QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group(M), QFOL-treated group(Q) and the control group(C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins(DEPs) were identified(15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B(FpB) and heparin cofactor Ⅱ(HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the Fp B level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.
文摘人呼吸道合胞病毒(Human respiratory syncytial virus,HRSV)感染是儿童时期罹患病毒性毛细支气管炎和肺炎的首要原因,与高发病率、住院率、死亡率明显相关。HRSV感染引起机体免疫应答失衡是导致发病的主要因素,其引发细胞介导的免疫应答方式常见的有辅助型T淋巴细胞1型(T-helper type 1,Th1)应答和辅助型T淋巴细胞2型(T-helper type 2,Th2)应答。这两种T细胞亚型的分化途径密切相关,两者之间的失衡可能在HRSV感染的发病机制中起重要作用。进一步研究和阐明HRSV感染对机体Th1、Th2之间免疫应答的作用机制将对寻找具有治疗作用的潜在靶标、通路,设计、研制安全有效的HRSV疫苗和药物具有至关重要的推动作用。