期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of tin addition on the microstructure and properties of ferritic stainless steel 被引量:5
1
作者 Yang Li Ji-peng Han +1 位作者 Zhou-hua Jiang Pan He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期37-44,共8页
This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel... This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel were observed, and the relationship between the workability and the microstructure of the steel was established. Energy-dispersive X-ray spectroscopic analysis of the steel reveals that an almost pure Sn phase forms and MnS-Sn compound inclusions appear in the steel with a higher Sn content. Little Sn segregation was observed in grain boundaries and in the areas around sulfide inclusions;however, the presence of Sn does not adversely affect the workability of the steel con-taining 0.4wt%Sn. When the Sn content is 0.1wt%-0.4wt%, Sn improves the tensile strength and the plastic strain ratio and also improves the plasticity with increasing temperature. A mechanism of improving the workability of ferritic stainless steel induced by Sn addition was discussed:the presence of Sn lowers the defect concentration in the ultra-pure ferritic lattice and the good distribution of tin in the lattice overcomes the problem of hot brittleness that occurs in low-carbon steel as a result of Sn segregation. 展开更多
关键词 ferritic stainless steel TIN inclusion modification microstructure mechanical properties hot brittleness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部