Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect ...Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect deeply. Based on the hydrodynamic energytransport model, using two-dimensional device simulator Medici, the relation between structureparameters and hot carrier effect immunity for deep-sub-micron N-channel MOSFET's is studiedand compared with that of counterpart conventional planar device in this paper. The examinedstructure parameters include negative junction depth, concave corner and effective channel length.Simulation results show that grooved gate device can suppress hot carrier effect deeply even indeep sub-micron region. The studies also indicate that hot carrier effect is strongly influencedby the concave corner and channel length for grooved gate device. With the increase of concavecorner, the hot carrier effect in grooved gate MOSFET decreases sharply, and with the reducingof effective channel length, the hot carrier effect becomes large.展开更多
In this paper, a new strategy of switchable CMOS phase-locked loop frequency synthesizer is proposed to increase its tuning range. The switchable PLL which integrates two phase-locked loops with different tuning frequ...In this paper, a new strategy of switchable CMOS phase-locked loop frequency synthesizer is proposed to increase its tuning range. The switchable PLL which integrates two phase-locked loops with different tuning frequencies are designed and fabricated in 0.5 μm n-well CMOS process. Cadence/Spectre simulations show that the frequency range of the switchable phased-locked loop is between 320 MHz to 1.15 GHz. The experimental results show that the RMS jitter of the phase-locked loop changes from 26 ps to 123 ps as output frequency varies. For 700 MHz carrier frequency, the phase noise of the phase-locked loop reaches as low as ?81 dBc/Hz at 10 kHz offset frequency and ?104 dBc/Hz at 1 MHz offset frequency. A device degradation model due to hot carrier effects has been used to analyze the jitter and phase noise performance in an open loop voltage-controlled oscillator. The oscillation frequency of the voltage-controlled oscillator decreases by approximately 100 to 200 MHz versus the bias voltage and the RMS jitter increases by 40 ps under different phase-locked loop output frequencies after 4 hours of stress time.展开更多
Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrie...Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.展开更多
Hot carrier induced (HCI) degradation of surface channel n MOSFETs with different oxide thicknesses is investigated under maximum substrate current condition.Results show that the key parameters m and n of H...Hot carrier induced (HCI) degradation of surface channel n MOSFETs with different oxide thicknesses is investigated under maximum substrate current condition.Results show that the key parameters m and n of Hu's lifetime prediction model have a close relationship with oxide thickness.Furthermore,a linear relationship is found between m and n .Based on this result,the lifetime prediction model can be expended to the device with thinner oxides.展开更多
Hot carrier effect(HCE) is studied on annular NMOS and two-edged NMOS such as H-shape gate NMOS, T-shape gate NMOS and common two-edged NMOS.Based on the chemical reaction equation of HCE degradation and a geometry ...Hot carrier effect(HCE) is studied on annular NMOS and two-edged NMOS such as H-shape gate NMOS, T-shape gate NMOS and common two-edged NMOS.Based on the chemical reaction equation of HCE degradation and a geometry dependent reaction diffusion equation,a HCE degradation model for annular NMOS and two-edged NMOS is proposed.According to this model,we conclude that the time exponent of the threshold voltage degradation depends on the configuration of the gate,and annular NMOS has more serious HCE degradation than two-edged NMOS.The design,fabrication and HCE experiments of these NMOS in a 0.5-μm PD SOI process verify the correctness of the conclusion.展开更多
In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in stra...In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in strain dependent dielectric material incorporating carrier heating (CH) effects. The consideration of CH in modulation and demodulation is prime importance for the adding of new dimension in analysis of amplification of acoustic helicon wave. By using the dispersion relation, threshold pump electric filed and growth rate of unstable mode from the modulation and demodulation of the high power helicon wave well above from the threshold value will be discussed in the present analysis. The numerical analysis is applied to a strain dependent dielectric material, BaTiO3 at room temperature and irradiated with high power helicon wave of frequency 1.78 × 1014 Hz. This material is very sensitive to the pump intensities, therefore during studies, Gaussian shape of the helicon pump wave is considered during the propagation in stain dependent dielectric material and opto-acoustic wave in the form of Gaussian profile (ω0,κ0) is induced longitudinally along the crystallographic plane of BaTiO3. Its variation is caused by the available magnetic field (ωc), interaction length (z) and pulsed duration of interaction (τ). From the analysis of numerical results, the incorporation of CH effect can effectively modify the magnitude of modulation or demodulation of the amplitude of high power helicon laser wave through diffusion process. Not only the amplitude modulation and demodulation of the wave, the diffusion of the CH effectively modifies the growth rate of unstable mode of frequency in BaTiO3. The propagation of the threshold electric field shows the sinusoidal or complete Gaussian profile, whereas this profile is found to be completely lost in growth of unstable mode. It has also been seen that the growth rate is observed to be of the order of 108 - 1010 s-1 but from diffusion of carrier heating, and that its order is enhanced from 1010 - 1012 s-1 with the variation of the magnetized frequency from 1 to 2.5 × 1014 Hz.展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
The front gate interface and oxide traps induced by hot carrier stress in SOI NMOSFETs are studied.Based on a new forward gated diode technique,the R G current originating from the front interface traps is me...The front gate interface and oxide traps induced by hot carrier stress in SOI NMOSFETs are studied.Based on a new forward gated diode technique,the R G current originating from the front interface traps is measured,and then the densities of the interface and oxide traps are separated independently.The experimental results show that the hot carrier stress of front channel not only results in the strong generation of the front interface traps,but also in the significant oxide traps.These two kinds of traps have similar characteristic in increasing with the hot carrier stress time.This analysis allows one to obtain a clear physical picture of the effects of the hot carrier stress on the generating of interface and oxide traps,which help to understand the degradation and reliability of the SOI MOSFETs.展开更多
The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal–oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively...The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal–oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W ), channel length (L), and stress voltage (Vd ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly.展开更多
Total dose irradiation and the hot-carrier effects of sub-micro NMOSFETs are studied. The results show that the manifestations of damage caused by these two effects are quite different, though the principles of damage...Total dose irradiation and the hot-carrier effects of sub-micro NMOSFETs are studied. The results show that the manifestations of damage caused by these two effects are quite different, though the principles of damage formation are somewhat similar. For the total dose irradiation effect, the most notable damage lies in the great increase of the off-state leakage current. As to the hot-carrier effect, most changes come from the decrease of the output characteristics curves as well as the decrease of trans-conductance. It is considered that the oxide-trapped and interface-trapped charges related to STI increase the current during irradiation, while the negative charges generated in the gate oxide, as well as the interface-trapped charges at the gate interface, cause the degradation of the hot-carrier effect. Different aspects should be considered when the device is generally hardened against these two effects.展开更多
We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (...We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (I-V) model, derived based on both Poisson's and continuity equations without the need of charge-sheet approxi- mation. The developed model offers the possibility to describe the entire range of different regions (subthreshold, linear and saturation) through a unique continuous expression. Therefore, the proposed approach can bring consid- erable enhancement at the level of multi-gate compact modeling including hot-carrier degradation effects.展开更多
We investigate how F exposure impacts the hot-carrier degradation in deep submicron NMOSFET with different technologies and device geometries for the first time. The results show that hot-carrier degradations on irrad...We investigate how F exposure impacts the hot-carrier degradation in deep submicron NMOSFET with different technologies and device geometries for the first time. The results show that hot-carrier degradations on irradiated devices are greater than those without irradiation, especially for narrow channel device. The reason is attributed to charge traps in STI, which then induce different electric field and impact ionization rates during hotcarrier stress.展开更多
A compact model for LDD MOSFET is proposed,which involves the hyperbolic tangent function description and the physics of device with emphasis on the substrate current modeling.The simulation results demonstrate good ...A compact model for LDD MOSFET is proposed,which involves the hyperbolic tangent function description and the physics of device with emphasis on the substrate current modeling.The simulation results demonstrate good agreement with measurement,and show that deep submicron LDD MOSFET has larger substrate current than submicron device does.The improved model costs low computation consumption,and is effective in manifestation of hot carrier effect and other effects in deep submicron devices,in turn is suitable for design and reliability analysis of scaling down devices.展开更多
基金Supported by the National Defense Preresearch Fund Program(No.99J8.1.1.DZD132)
文摘Grooved gate structure Metal-Oxide-Semiconductor (MOS) device is consideredas the most promising candidate used in deep and super-deep sub-micron region, for it cansuppress hot carrier effect and short channel effect deeply. Based on the hydrodynamic energytransport model, using two-dimensional device simulator Medici, the relation between structureparameters and hot carrier effect immunity for deep-sub-micron N-channel MOSFET's is studiedand compared with that of counterpart conventional planar device in this paper. The examinedstructure parameters include negative junction depth, concave corner and effective channel length.Simulation results show that grooved gate device can suppress hot carrier effect deeply even indeep sub-micron region. The studies also indicate that hot carrier effect is strongly influencedby the concave corner and channel length for grooved gate device. With the increase of concavecorner, the hot carrier effect in grooved gate MOSFET decreases sharply, and with the reducingof effective channel length, the hot carrier effect becomes large.
文摘In this paper, a new strategy of switchable CMOS phase-locked loop frequency synthesizer is proposed to increase its tuning range. The switchable PLL which integrates two phase-locked loops with different tuning frequencies are designed and fabricated in 0.5 μm n-well CMOS process. Cadence/Spectre simulations show that the frequency range of the switchable phased-locked loop is between 320 MHz to 1.15 GHz. The experimental results show that the RMS jitter of the phase-locked loop changes from 26 ps to 123 ps as output frequency varies. For 700 MHz carrier frequency, the phase noise of the phase-locked loop reaches as low as ?81 dBc/Hz at 10 kHz offset frequency and ?104 dBc/Hz at 1 MHz offset frequency. A device degradation model due to hot carrier effects has been used to analyze the jitter and phase noise performance in an open loop voltage-controlled oscillator. The oscillation frequency of the voltage-controlled oscillator decreases by approximately 100 to 200 MHz versus the bias voltage and the RMS jitter increases by 40 ps under different phase-locked loop output frequencies after 4 hours of stress time.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.60836004)the National Natural Science Foundation of China(Grant Nos.61006070 and 61076025)
文摘Annular gate nMOSFETs are frequently used in spaceborne integrated circuits due to their intrinsic good capability of resisting total ionizing dose (TID) effect. However, their capability of resisting the hot carrier effect (HCE) has also been proven to be very weak. In this paper, the reason why the annular gate nMOSFETs have good TID but bad HCE resistance is discussed in detail, and an improved design to locate the source contacts only along one side of the annular gate is used to weaken the HCE degradation. The good TID and HCE hardened capability of the design are verified by the experiments for I/O and core nMOSFETs in a 0.18 μm bulk CMOS technology. In addition, the shortcoming of this design is also discussed and the TID and the HCE characteristics of the replacers (the annular source nMOSFETs) are also studied to provide a possible alternative for the designers.
文摘Hot carrier induced (HCI) degradation of surface channel n MOSFETs with different oxide thicknesses is investigated under maximum substrate current condition.Results show that the key parameters m and n of Hu's lifetime prediction model have a close relationship with oxide thickness.Furthermore,a linear relationship is found between m and n .Based on this result,the lifetime prediction model can be expended to the device with thinner oxides.
基金Project supported by the Key Program of the National Natural Science Foundation of China(No.60836004)the Ministry of Education Creative Team Research Project,China.
文摘Hot carrier effect(HCE) is studied on annular NMOS and two-edged NMOS such as H-shape gate NMOS, T-shape gate NMOS and common two-edged NMOS.Based on the chemical reaction equation of HCE degradation and a geometry dependent reaction diffusion equation,a HCE degradation model for annular NMOS and two-edged NMOS is proposed.According to this model,we conclude that the time exponent of the threshold voltage degradation depends on the configuration of the gate,and annular NMOS has more serious HCE degradation than two-edged NMOS.The design,fabrication and HCE experiments of these NMOS in a 0.5-μm PD SOI process verify the correctness of the conclusion.
文摘In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in strain dependent dielectric material incorporating carrier heating (CH) effects. The consideration of CH in modulation and demodulation is prime importance for the adding of new dimension in analysis of amplification of acoustic helicon wave. By using the dispersion relation, threshold pump electric filed and growth rate of unstable mode from the modulation and demodulation of the high power helicon wave well above from the threshold value will be discussed in the present analysis. The numerical analysis is applied to a strain dependent dielectric material, BaTiO3 at room temperature and irradiated with high power helicon wave of frequency 1.78 × 1014 Hz. This material is very sensitive to the pump intensities, therefore during studies, Gaussian shape of the helicon pump wave is considered during the propagation in stain dependent dielectric material and opto-acoustic wave in the form of Gaussian profile (ω0,κ0) is induced longitudinally along the crystallographic plane of BaTiO3. Its variation is caused by the available magnetic field (ωc), interaction length (z) and pulsed duration of interaction (τ). From the analysis of numerical results, the incorporation of CH effect can effectively modify the magnitude of modulation or demodulation of the amplitude of high power helicon laser wave through diffusion process. Not only the amplitude modulation and demodulation of the wave, the diffusion of the CH effectively modifies the growth rate of unstable mode of frequency in BaTiO3. The propagation of the threshold electric field shows the sinusoidal or complete Gaussian profile, whereas this profile is found to be completely lost in growth of unstable mode. It has also been seen that the growth rate is observed to be of the order of 108 - 1010 s-1 but from diffusion of carrier heating, and that its order is enhanced from 1010 - 1012 s-1 with the variation of the magnetized frequency from 1 to 2.5 × 1014 Hz.
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
文摘The front gate interface and oxide traps induced by hot carrier stress in SOI NMOSFETs are studied.Based on a new forward gated diode technique,the R G current originating from the front interface traps is measured,and then the densities of the interface and oxide traps are separated independently.The experimental results show that the hot carrier stress of front channel not only results in the strong generation of the front interface traps,but also in the significant oxide traps.These two kinds of traps have similar characteristic in increasing with the hot carrier stress time.This analysis allows one to obtain a clear physical picture of the effects of the hot carrier stress on the generating of interface and oxide traps,which help to understand the degradation and reliability of the SOI MOSFETs.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00606)the National Natural Science Foundation of China (Grant No. 61106106)the Fundamental Research Funds for the Central Universities, China (Grant No. K50510250006)
文摘The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal–oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W ), channel length (L), and stress voltage (Vd ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly.
文摘Total dose irradiation and the hot-carrier effects of sub-micro NMOSFETs are studied. The results show that the manifestations of damage caused by these two effects are quite different, though the principles of damage formation are somewhat similar. For the total dose irradiation effect, the most notable damage lies in the great increase of the off-state leakage current. As to the hot-carrier effect, most changes come from the decrease of the output characteristics curves as well as the decrease of trans-conductance. It is considered that the oxide-trapped and interface-trapped charges related to STI increase the current during irradiation, while the negative charges generated in the gate oxide, as well as the interface-trapped charges at the gate interface, cause the degradation of the hot-carrier effect. Different aspects should be considered when the device is generally hardened against these two effects.
文摘We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (I-V) model, derived based on both Poisson's and continuity equations without the need of charge-sheet approxi- mation. The developed model offers the possibility to describe the entire range of different regions (subthreshold, linear and saturation) through a unique continuous expression. Therefore, the proposed approach can bring consid- erable enhancement at the level of multi-gate compact modeling including hot-carrier degradation effects.
文摘We investigate how F exposure impacts the hot-carrier degradation in deep submicron NMOSFET with different technologies and device geometries for the first time. The results show that hot-carrier degradations on irradiated devices are greater than those without irradiation, especially for narrow channel device. The reason is attributed to charge traps in STI, which then induce different electric field and impact ionization rates during hotcarrier stress.
文摘A compact model for LDD MOSFET is proposed,which involves the hyperbolic tangent function description and the physics of device with emphasis on the substrate current modeling.The simulation results demonstrate good agreement with measurement,and show that deep submicron LDD MOSFET has larger substrate current than submicron device does.The improved model costs low computation consumption,and is effective in manifestation of hot carrier effect and other effects in deep submicron devices,in turn is suitable for design and reliability analysis of scaling down devices.