期刊文献+
共找到2,073篇文章
< 1 2 104 >
每页显示 20 50 100
Hot Compression Behavior of As-Cast Precipitation-Hardening Stainless Steel 被引量:9
1
作者 A Momeni S M Abbasi A Shokuhfar 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第5期66-70,共5页
High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain ra... High temperature deformation characteristics of a semiaustenitic grade of precipitation-hardening stain- less steels were investigated by conducting hot compression tests at temperatures of 900--1 100 ℃ and strain rates of 0. 001--1 s^-1. Flow behavior of this alloy was investigated and it was realized that dynamic recrystallization (DRX) was responsible for flow softening. The correlation between critical strain for initiation of DRX and de- formation parameters including temperature and strain rate, and therefore, Zener-Hollomon parameter (Z) was studied. Metallographic observation was performed to determine the as-deformed microstructure. Microstructural observation shows that recrystallized grain size increases with increasing the temperature and decreasing the strain rate. The activation energy required for DRX of the investigated steel was determined using correlations of flow stress versus temperature and strain rate. The calculated value of activation energy, 460 kJ/mol, is in accordance with other studies on stainless steels. The relationship between peak strain and Z parameter is proposed. 展开更多
关键词 hot compression precipitation hardening stainless steel dynamic recrystallization
下载PDF
Static softening behaviors of 7055 alloy during the interval time of multi-pass hot compression 被引量:6
2
作者 Liang-Ming Yan Jian Shen +1 位作者 Jun-Peng Li Bai-Ping Mao 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期241-246,共6页
Multipass plain strain compression test of 7055 alloy was carried out on Gleeble 1500D thermomechanical simulator to study the effect of interval time on static softening behavior between two passes. Microstructural f... Multipass plain strain compression test of 7055 alloy was carried out on Gleeble 1500D thermomechanical simulator to study the effect of interval time on static softening behavior between two passes. Microstructural features of the alloy deformed with delay times varying from 0 to 180 s after achieving a reduction of ,-~52 % in the 13 stages was investigated through TEM and EBSD observations. The 14th pass of peak stresses after different delay times were gained. The peak stress decreases with the interstage delay time increasing, but the decreasing trend is gradually slower. Static recovery, metadynamic recrystallization, and/or static recrystallization can be found in the alloy during two passes. The recovery and recrystallization degree increases with longer interstage delay time. The static recovery is the main softening mechanism. Subgrain coalescence and subgrain growth together with particle-stimulated nucleation are the main nucleation mechanisms for static recrystallization. 展开更多
关键词 7055 aluminum alloy hot compression Microstructure Interval time
下载PDF
Effects of process parameters on the microstructure during the hot compression of a TC6 titanium alloy 被引量:5
3
作者 LIMiaoquan XIONGAiming +3 位作者 CHENGShenghui HUANGWeichao LIYuanchun LINHai 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期263-268,共6页
The effects of process parameters on the microstructural evolution, includinggrain size and volume traction of the a phase during hot forming of a TC6 alloy were investigatedusing compression tests. Experiments were c... The effects of process parameters on the microstructural evolution, includinggrain size and volume traction of the a phase during hot forming of a TC6 alloy were investigatedusing compression tests. Experiments were conducted on the material with (α + β) phases atdeformation temperatures of 800, 860, 920, and 950℃, strain rates of 0.001, 0.01, 1, and 50 s^(-1),and height direction reductions of 30%, 40%, and 50%. After reaching a peak value near 920℃, thegrain size and volume fraction decrease with further increase of deformation temperature. The strainrate affects the morphologies and grain size of α phase of the TC6 titanium alloy. At a lowerstrain rate, the effect of the strain rate on the volume fraction is greater than that at a higherstrain rate under the experimental conditions. The effects of the strain rate on the microstructurealso result from deformation heating. The grain size of the α phase increases with an increase inheight direction reduction after an early drop. The effect of height direction reduction on thevolume fraction is similar to that of the grain size. All of the optical micrographs andquantitative metallography show that deformation process parameters affect the microstructure duringhot forming of the TC6 alloy, and a correlation between the temperature, strain, and strain rateappears to be a significant fuzzy characteristic. 展开更多
关键词 titanium alloy hot compression microstructure variables processparameters grain size
下载PDF
Hot compressive deformation behaviors and micro-mechanisms of TA15 alloy 被引量:3
4
作者 LIU Yong,ZHU Jingchuan,WANG Yang,and ZHAN Jiajun School of Materials Science and Technology,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期162-167,共6页
The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature l... The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries. 展开更多
关键词 TA15 alloy hot compressive deformation micro-mechanisms
下载PDF
Microstructure and hot compression behavior of twin-roll-casting AZ41M magnesium alloy 被引量:2
5
作者 WANG Shouren WANG Min +2 位作者 MA Ru WANG Yong WANG Yanjun 《Rare Metals》 SCIE EI CAS CSCD 2010年第4期396-400,共5页
The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium al... The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed us- ing a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, sWain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true sWain pre- dicted that lower deformation temperature and higher sWain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s^-1) is appropriate. 展开更多
关键词 magnesium alloy deformation behavior twin-roll-casting hot compression microstructural evolution
下载PDF
Research on flow stress of spray formed 70Si30Al alloy under hot compression deformation 被引量:2
6
作者 WEI Yanguang XIONG Baiqing ZHANG Yong'an LIU Hongwei ZHU Baohong WANG feng 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期665-670,共6页
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation tem... The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation. 展开更多
关键词 70Si30Al alloy spray forming flow stress hot compression An'henius equation
下载PDF
Deformation mechanism of the spray formed 70Si30Al alloy during hot compression 被引量:1
7
作者 WEI Yanguang XIONG Baiqing ZHANG Yong'an LIU Hongwei WANG Feng ZHU Baohong 《Rare Metals》 SCIE EI CAS CSCD 2007年第1期56-61,共6页
The deformation mechanism of the spray formed 70Si30Al alloy was studied by hot compression on a Gleeble-1500 test machine. It is shown that hot deformation of the spray formed 70Si30Al alloy is achieved by liquid flo... The deformation mechanism of the spray formed 70Si30Al alloy was studied by hot compression on a Gleeble-1500 test machine. It is shown that hot deformation of the spray formed 70Si30Al alloy is achieved by liquid flow due to isostatic pressure and movement of solid particles due to shear force. Deformation condition depends on the nucleation rate and closure rate of the cavities. The flow stress slightly varies when the difference between the nucleation rate and closure rate of the cavities is small; however, it decreases when the nucleation rate of the cavities is greater than the closure rate of the cavities. 展开更多
关键词 70Si30Al alloy spray forming hot compression deformation mechanism
下载PDF
Influence of prior austenite grain size on the critical strain for completion of DEFT through hot compression test 被引量:1
8
作者 Jing Tian Wangyue Yang +1 位作者 Zuqing Sun Jianping He 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期135-138,共4页
A low carbon steel was used to determine the critical strain εc for completion of deformation enhanced ferrite transformation (DEFT) through a series of hot compression tests. In addition, the influence of prior au... A low carbon steel was used to determine the critical strain εc for completion of deformation enhanced ferrite transformation (DEFT) through a series of hot compression tests. In addition, the influence of prior austenite grain size (PAGS) on the critical strain was systematically investigated. Experimental results showed that the critical strain is affected by PAGS. When γ→α transformation completes, the smaller the PAGS is, the smaller the critical strain is. The ferrite grains obtained through DEFT can be refined to about 3 μm when the DEFT is completed. 展开更多
关键词 low carbon steel hot compression deformation enhanced ferrite transformation critical strain prior austenite grain size
下载PDF
Effects of hot compression deformation temperature on the microstructure and properties of Al–Zr–La alloys 被引量:2
9
作者 Xian-hua Yue Chun-fang Liu +3 位作者 Hui-hua Liu Su-fen Xiao Zheng-hua Tang Tian Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第2期236-243,共8页
The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator... The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al;Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding. 展开更多
关键词 microstructure Al–Zr–La alloys hot compression deformation dislocation
下载PDF
Effect of deformation temperature on the hot compressive behavior of metal matrix composites with misaligned whiskers
10
作者 LI Aibin MENG Qingyuan +2 位作者 GENG Lin DENG Chunfeng YAN Yiwu 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期182-192,共11页
A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results sho... A multi-inclusion cell model is used to investigate the effect of deformation temperature and whisker rotation on the hot compressive behavior of metal matrix composites with misaligned whiskers. Numerical results show that deformation temperature influences the work-hardening behavior of the matrix and the rotation behavior of the whiskers. With increasing temperature, the work hardening rate of the matrix decreases, but the whisker rotation angle increases. Both whisker rotation and the increase of deformation temperature can induce reductions in the load supported by whisker and the load transferred from matrix to whisker. Additionally, it is found that during large strain deformation at higher temperatures, the enhancing of deformation temperature can reduce the effect of whisker rotation. Meanwhile, the stress-strain behavior of the composite is rather sensitive to deformation temperature. At a relatively lower temperature (150℃), the composite exhibits work hardening due to the matrix work hardening, but at relatively higher temperatures (300℃ and above), the composite shows strain softening due to whisker rotation. It is also found that during hot compression at higher temperatures, the softening rate of the composite decreases with increasing temperature. The predicted stress-strain behavior of the composite is approximately in agreement with the experimental results. 展开更多
关键词 metal matrix composite hot compressive behavior deformation temperature finite element method
下载PDF
Lamellar Disintegration Mechanism of TC11 Titanium Alloy during Hot Compression
11
作者 郑佩琦 黄陆军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期44-46,共3页
TC11 titanium alloy samples with lamellar microstructrue were compressed on a Gleeble 1500D Simulator.Compression tests were carried out at 950 ℃ and a strain rate of 0.1 s-1 with height reduction of 20%,40% and 60%,... TC11 titanium alloy samples with lamellar microstructrue were compressed on a Gleeble 1500D Simulator.Compression tests were carried out at 950 ℃ and a strain rate of 0.1 s-1 with height reduction of 20%,40% and 60%,respectively.Microstruture of the compressed TC11 alloy was obeserved and analyzed by optical microscopy(OM),transmission electron microscope(TEM),electron back-scattered diffraction(EBSD).The lamellar disintegration mechanism of the TC11 titanium alloy was deduced.The results indicated that the compressive deformation promoted the phase transformation in bi-phase area.βphase layers were formed along the gliding planes inα phase,and α slivers were disintegrated into many small flakes through theα/βinterface slipping. 展开更多
关键词 TC11 titanium alloy hot compression lamellar microstructure lamellar disintegration
下载PDF
The Dislocation Sub-structure Evolution during Hot Compressive Deformation of Ti-6Al-2Zr-1Mo-1V Alloy at 800℃
12
作者 刘勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期202-205,共4页
Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a pe... Hot compressive behaviors of Ti-6Al-2Zr-1Mo-1V alloy at 800℃, as well as the evolution of microstructure during deformation process, were investigated. The experimental results show that flow stress increases to a peak stress followed by a decease with increasing strain, and finally forms a stable stage. Dislocations are generated at the interface of αβ phase, and the phase interface and dislocation loops play an important role in impeding the movement of dislocation. As strain increasing, micro-deformation bands with high-density dislocation are formed, and dynamic recrystallizaton occurs finally. XRD Fourier analysis reveals that dislocation density increases followed by a decrease during compressive deformation, and falls into the range from 10^10 to 10^11 cm^-2. 展开更多
关键词 Ti-6Al-2Zr-IMo-1V alloy hot compressive deformation behavior dislocation sub-structure evolution
下载PDF
Clinical observation of Hot Compress and Mounting Medicine Method
13
作者 Zhang Lide(Physiotherapy Dept.of Yangzhou Mineral Bureau General Hospital,Shandong Province) 《中国针灸》 CAS CSCD 北大核心 1995年第S2期336-336,共1页
ClinicalobservationofHotCompressandMountingMedicineMethod¥ZhangLide(PhysiotherapyDept.ofYangzhouMineralBurea... ClinicalobservationofHotCompressandMountingMedicineMethod¥ZhangLide(PhysiotherapyDept.ofYangzhouMineralBureauGeneralHospital,... 展开更多
关键词 Clinical observation of hot compress and Mounting Medicine Method
下载PDF
Microstructure comparison of ZK60 alloy under casting,twin roll casting and hot compression 被引量:3
14
作者 王守仁 王敏 +1 位作者 KANG Suk-bong CHO Jae-hyung 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期763-768,共6页
The microstructures of ZK60 alloy under conventional direct as-casting (DC),twin roll casting (TRC) and twin roll casting followed by hot compression (TRC-HC) were analyzed by optical morphology (OM),electron backscat... The microstructures of ZK60 alloy under conventional direct as-casting (DC),twin roll casting (TRC) and twin roll casting followed by hot compression (TRC-HC) were analyzed by optical morphology (OM),electron backscatter diffraction (EBSD) and X-ray diffraction (XRD).The deformation condition of hot compression is 350 ℃,0.1 s?1.The microstructural evolution under TRC-HC deformation followed by annealing at different temperatures and time was discussed.The results show that TRC provides more modified microstructure compared with DC.Twins are found in TRC processing;dynamic recrystallization (DRX),shear bands and twins are found in TRC-HC.A short annealing time has little effect on hardness,while during a long time annealing,it is found that low annealing temperatures increase the micro-hardness and high temperature decreases it. 展开更多
关键词 热压缩变形 ZK60合金 双辊铸造 微观结构 结构比较 电子背散射衍射 退火时间 X射线衍射仪
下载PDF
Flow behavior and microstructure evolution during hot compression of TA15 titanium alloy 被引量:2
15
作者 徐文臣 单德彬 +1 位作者 杨国平 吕炎 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期2066-2071,共6页
The samples of TA15 titanium alloy were hot compressed in the temperature range of 550-1 000℃at constant strain rate from 0.01 s-1 to 1.0 s-1.The flow behavior and microstructural evolution during hot deformation of ... The samples of TA15 titanium alloy were hot compressed in the temperature range of 550-1 000℃at constant strain rate from 0.01 s-1 to 1.0 s-1.The flow behavior and microstructural evolution during hot deformation of TA15 alloy were investigated, based on which the hot working parameters of TA15 alloy were selected. The results show that with the increase of deformation temperature and decrease of stain rate, the flow stress decreases gradually, but the magnitude of stress drop varies with the increase of temperature in different temperature intervals. According to the flow stress and deformation microstructure, the deformation behavior can be classified into three types as working hardening(550-600℃,α+βphase), dynamic recrystallization (650-900℃,α+βphase) and dynamic recovery(950-1 000℃,βphase). The main softening mechanism is dynamic recrystallization(DRX) ofαphase inα+βphase zone and dynamic recovery(DRV) ofβphase inβphase zone. As the stain rate decreases dynamic recrystallization ofαphase proceeds more adequately inα+βzone and theβsubgrains of dynamic recovery have the tendency to grow inβzone. The reasonable temperature for warm forming of TA15 alloy is in the range of 600-700℃, which has been verified by warm spinning experiment of tube workpieces. 展开更多
关键词 钛合金 微观结构 热散失 再结晶作用
下载PDF
Flow stress behavior of Al-Cu-Li-Zr alloy containing Sc during hot compression deformation 被引量:2
16
作者 梁文杰 潘清林 +2 位作者 何运斌 李运春 张小刚 《Journal of Central South University of Technology》 EI 2008年第3期289-294,共6页
The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were prefor... The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa-1 and 1.51×1016 s-1,respectively. The hot deformation activation energy is 240.85 kJ/mol. 展开更多
关键词 铝铜锂锆合金 钪掺杂 流动应力 热压变形
下载PDF
Dynamic modeling of twin roll casting AZ41 magnesium alloy during hot compression processing 被引量:1
17
作者 王敏 王守仁 +2 位作者 S.BKANG J.H.CHO 王砚军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期513-518,共6页
A dynamic material model of Mg-4.51Al-1.19Zn-0.5Mn-0.5Ca(AZ41,mass fraction,%)magnesium alloy was put forward.The results show that the dynamic material model can characterize the deformation behavior and microstructu... A dynamic material model of Mg-4.51Al-1.19Zn-0.5Mn-0.5Ca(AZ41,mass fraction,%)magnesium alloy was put forward.The results show that the dynamic material model can characterize the deformation behavior and microstructure evolution and describe the relations among flow stress,strain,strain rates and deformation temperatures.Statistical analysis shows the validity of the proposed model.The model predicts that lower deformation temperature and higher strain rate cause the sharp strain hardening. Meanwhile,the flow stress curve turns into a steady state at high temperature and lower strain rate.The moderate temperature of 350 ℃and strain rate of 0.01 s-1 are appropriate to this alloy. 展开更多
关键词 镁合金 压缩处理 双辊铸轧 动态模拟 低应变速率 材料模型 变形温度 流动应力
下载PDF
Hot compression deformation behavior of MB26 magnesium alloy
18
作者 杜志惠 张绪虎 +3 位作者 方西亚 张晓娟 陈永来 张宇玮 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期400-404,共5页
The flow stress features of MB26 magnesium alloy were studied by isothermal compression at 300-450 ℃ and strain rate of 0.001-1 s-1 with Gleeble 1500 thermal simulator. In addition,the deformation activation energy Q... The flow stress features of MB26 magnesium alloy were studied by isothermal compression at 300-450 ℃ and strain rate of 0.001-1 s-1 with Gleeble 1500 thermal simulator. In addition,the deformation activation energy Q was calculated. The results show that the strain rate and deformation temperature have obvious effect on the true stress. The peak value of flow stress becomes larger with increasing strain rate at the same temperature,and gets smaller with the increasing deformation temperature at the same strain rate. The alloy shows partial dynamic recrystallization. The flow stress of MB26 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter including the Arrhemius term. The temperature range of 350-400 ℃ is suggested for hot-forming of this alloy. 展开更多
关键词 镁合金 热压缩成型技术 流体压力 物理特征
下载PDF
Flow stress of 2197 Al-Li alloy during hot compression deformation
19
作者 魏修宇 郑子樵 +1 位作者 付欣 陈秋妮 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期280-284,共5页
The flow stress behavior of 2197 Al-Li alloy during hot compression deformation was studied in the strain rate range from 0.01 to 10 s-1 and the temperature range from 360 to 510 ℃ by isothermal compression test on a... The flow stress behavior of 2197 Al-Li alloy during hot compression deformation was studied in the strain rate range from 0.01 to 10 s-1 and the temperature range from 360 to 510 ℃ by isothermal compression test on a Gleeble-1500 thermal-mechanical simulator. The results show that the flow stress of 2197 Al-Li alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The peak flow stress during high temperature deformation can be represented by Z parameter in a hyperbolic sine function. The analytical expression of peak flow stress was fitted with the hot deformation activation energy of 260.6 kJ/mol. 展开更多
关键词 合金 热成型技术 压缩技术
下载PDF
The hot compressive deformation behavior of the metal matrix composites with the large whisker orientation
20
作者 李爱滨 孟庆元 +1 位作者 耿林 李丹 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期507-512,共6页
Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress fie... Finite element analysis was used to investigate the effects of whisker misalignment on the hot compressive deformation behavior of whisker-reinforced composites. The simulation provided the evolution of the stress field of the composites and the whisker rotation process. It is found that with increasing the angle of whisker misalignment the whisker rotation angle decreases. Meanwhile, the mechanical behaviors of the composites such as work hardening or strain softening are affected by the whisker orientation and rotation during the hot compressive deformation. The predicted results are in agreement with the experimental results. 展开更多
关键词 有限元 金属基复合材料 热压缩变形 金属须
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部