期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Characterization of hot carrier cooling and multiple exciton generation dynamics in PbS QDs using an improved transient grating technique
1
作者 Qing Shen Kenji Katayama Taro Toyoda 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期712-716,共5页
Multiple exciton generation (MEG) dynamics in colloidal PbS quantum dots (QDs) characterized with an im- proved transient grating (TG) technique will be reported. Only one peak soon after optical absorption and ... Multiple exciton generation (MEG) dynamics in colloidal PbS quantum dots (QDs) characterized with an im- proved transient grating (TG) technique will be reported. Only one peak soon after optical absorption and a fast decay within 1 ps can be observed in the TG kinetics when the photon energy of the pump light hv is smaller than 2.7Eg (Eg: band gap between LUMO and HOMO in the QDs), which corresponds to hot carrier cooling. When hv is greater than 2.7Eg, however, after the initial peak, the TG signal decreases first and soon increases, and then a new peak appears at about 2 to 3 ps. The initial peak and the new peak correspond to hot carriers at the higher excited state and MEG at the lowest excited state, respectively. By proposing a theoretical model, we can calculate the hot carrier cooling time constant and MEG occurrence time constant quantitatively. When MEG does not happen for hv smaller than 2.7Eg, hot carrier cools with a time con- stant of 400 fs. When MEG occurs for hv larger than 2.7Eg, hot carrier cools with a time constant as small as 200 fs, while MEG occurs with a time constant of 600 fs. The detailed hot carrier cooling and MEG occurrence dynamics characterized in this work would shed light on the further understanding of MEG mechanism of various type of semiconductor QDs. 展开更多
关键词 PbS Quantum dots Multiple exciton generation hot carrier cooling Transient grating
下载PDF
Exceptionally efficient deep blue anthracene-based luminogens:design,synthesis,photophysical,and electroluminescent mechanisms 被引量:1
2
作者 Runda Guo Wei Liu +8 位作者 Shian Ying Yuwei Xu Yating Wen Yaxiong Wang Dehua Hu Xianfeng Qiao Bing Yang Dongge Ma Lei Wang 《Science Bulletin》 SCIE EI CSCD 2021年第20期2090-2098,M0004,共10页
Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent ... Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters. 展开更多
关键词 Anthracene derivative Deep blue luminogen hot excitons Triplet-triplet annihilation up-conversion Non-doped device
原文传递
Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs
3
作者 Hui Liu Xiangyang Tang +6 位作者 Zhuang Cheng Yin Hu Yan Yan Yangze Xu Zihan Su Futong Liu Ping Lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期175-179,共5页
Deep-blue emitter with high photoluminescence efficiency(PLQY)is highly desirable in ultra-high definition displays and white solid-state lightings.In this work,two deep-blue phenanthro[9,10]imidazole derivatives,PPIS... Deep-blue emitter with high photoluminescence efficiency(PLQY)is highly desirable in ultra-high definition displays and white solid-state lightings.In this work,two deep-blue phenanthro[9,10]imidazole derivatives,PPIS and PPPIS,with hot exciton property are successfully developed.Compared to PPIS,the embedded phenyl bridge in PPPIS is able to effectively increase the overlap of frontier molecular orbitals.In consequence,PPPIS shows higher oscillator strength and significantly enhanced PLQY.PPPIS also achieves better electroluminescence performance in non-doped device,showing deep-blue emission with Commission International de l’Eclairage(CIE)coordinates of(0.153,0.087)and the maximum external quantum efficiency(EQEmax)of 8.5%with minuscule efficiency roll-off.Meanwhile,when PPPIS serves as the host for phosphor PO-01,high-efficiency orange phosphorescent device is obtained with high EQEmax of 29.8%and negligible efficiency roll-off at 1000 cd/m^(2).Further,efficient single-emissive-layer white device is assembled via utilizing PPPIS as a blue emitter as well as the host for PO-01 simultaneously,providing warm-white emission with CIE coordinates of(0.429,0.433)at 1000 cd/m^(2),the forward-viewing EQEmaxof 27.2%and maximum power efficiency(PEmax)of 80.1 lm/W,respectively.Our studies can establish a viable design strategy for deep-blue emitters in high-performance non-doped blue OLEDs and hybrid WOLEDs. 展开更多
关键词 Deep-blue emitters Phenanthro[9 10]imidazole hot exciton Host Single-emissive-layer white device
原文传递
Progress in next-generation organic electroluminescent materials:material design beyond exciton statistics 被引量:11
4
作者 YAO Liang YANG Bing MA YuGuang 《Science China Chemistry》 SCIE EI CAS 2014年第3期335-345,共11页
Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excit... Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state. 展开更多
关键词 organic light-emitting device(OLED) exciton statistics reverse intersystem crossing(RISC) hybridized local and charge-transfer(HLCT) hot exciton
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部