Hot corrosion(HC) of the APS(atomospheric plasma spraying)CoNiCrAlTaSiY coating on a nickel-base superalloy GH864 has been studied. The effect of laser-treatment on hot corrosion resistance was also examined.It was sh...Hot corrosion(HC) of the APS(atomospheric plasma spraying)CoNiCrAlTaSiY coating on a nickel-base superalloy GH864 has been studied. The effect of laser-treatment on hot corrosion resistance was also examined.It was shown that CoNiCrAlTaSiY coating had superior properties in resistance to hot corrosion due to the readiness of the formation of a protective Cr2O3 scale on the coating surface.A model for the mechanism of hot corrosion of this coating has been suggested. Hot corrosion resistance of this coating was significantly increased by the laser treatment simply because the surface of the as sprayed coating was densified by the high power laser beam.展开更多
Self-consistent calculations of energy loss for a Ga ion moving in hot Au plasmas are made under the assumption of wide ranges of the projectile energy and the plasma temperature with all important mechanisms consider...Self-consistent calculations of energy loss for a Ga ion moving in hot Au plasmas are made under the assumption of wide ranges of the projectile energy and the plasma temperature with all important mechanisms considered in detail.The relevant results are found to be quite different from those of an a particle or a proton.One important reason for this is the rapid increasing of the charge state of a Ga ion at plasma temperature.This reason also leads to the inelastic stopping which does not always decrease with the increase of plasma temperature,unlike the case of an a particle.The nuclear stopping becomes very important at high enough plasma temperature due to the heavy reduced mass of a Ga and an Au ion and the above-mentioned reason.The well-known binary collision model[Phys.Rev.126(1962)1]and its revised one[Phys.Rev.A 29(1984)2145]are not working or unsatisfactory in this case.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungst...In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC cerami...In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC ceramic powder used as coating material to obtain different Ni-based SiC alloys coating. Micro-structure and micro-hardness analysis of the coating layer were followed, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70% Ni60, 30% SiC powder has best properties with plasma spray welding, in which the micro-hardness can achieve 1100 HV, meanwhile can improve the thermal property of hot-forging die dramatically.展开更多
The hot dipping process of pure aluminum on H13 steel substrates followed by plasma electrolytic oxidation(PEO) was studied to form alumina ceramic coatings for protective purpose.H13 steel bars were first dipped in p...The hot dipping process of pure aluminum on H13 steel substrates followed by plasma electrolytic oxidation(PEO) was studied to form alumina ceramic coatings for protective purpose.H13 steel bars were first dipped in pure aluminum melts,and then,a reactive iron-aluminum intermetallic layer grew at the interface between the melt and the steel substrate.The reactive layer was mainly composed of intermetallic Fe-Al(Fe_2Al_5);the thickness of aluminum layer and Fe-Al intermetallic layer were mainly influenced by dipping time(1.5~12.0 min) and dipping temperature(710~760 ℃).After PEO process,uniform Al_2O_3 ceramic coatings were deposited on the surface of aluminized steel.The element distribution,phase composition and morphology of the aluminized layer,and the ceramic coatings were characterized by SEM/EDS and XRD.The distribution of hardness across the composite coating is demonstrated,and the maximum value reaches 1864 HV.The thermal shock resistance of the coated sample is also well improved.展开更多
To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 3...To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.展开更多
β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical prop...β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical properties of Si3N4 ceramics prepared using this method were compared with those obtained by hot pressing process. Well densified Si3N4 ceramics with finer and homogeneous microstructure and better mechanical properties were obtained in the case of the SPS technique at 200°C lower than that of hot pressing. The microhardness is 15.72 GPa, the bending strength is 716.46 MPa, and the fracture toughness is 7.03 MPa·m1/2.展开更多
The linear Langmuir and electromagnetic (EM) waves in relativistic hot plasmas are discussed, and the dispersion relations are obtained based on the covariant Maxwell's and fluid equations. When k_BT/mc^2> 1, t...The linear Langmuir and electromagnetic (EM) waves in relativistic hot plasmas are discussed, and the dispersion relations are obtained based on the covariant Maxwell's and fluid equations. When k_BT/mc^2> 1, the effective mass of electrons will be increased obviously. As the results, many other influences are induced, such as the decrease of the plasmas frequency and the critical frequency, the reduction of the electron sound velocity and the electrons' oscillation velocity, and so on. Numerical results show that these influences can affect the dispersion relations of Langmuir and EM waves seriously even in linear regime.展开更多
For the first time, absolute densities of atomic nitrogen in its ground state (N4S) have been measured in hot dry and humid air plasma columns under post-discharge regime. The determination of space-resolved absolute ...For the first time, absolute densities of atomic nitrogen in its ground state (N4S) have been measured in hot dry and humid air plasma columns under post-discharge regime. The determination of space-resolved absolute densities leads to obtain the dissociation degrees of molecular nitrogen in the plasma. The hot plasmas are generated inside an upstream gas-conditioning cell at 600 mbar when the air gas flow is directly injected at 10 slm in a microwave resonant cavity (2.45 GHz, 1 kW) placed in the downstream side. Density measurements based on laser induced fluorescence spectroscopy with two-photon excitation (TALIF), are more particularly performed along the radial and axial positions of the plasma column. Calibration of TALIF signals is performed in situ (i.e. in the same gas-conditioning cell but without plasma) using an air gas mixture containing krypton. Optical emission spectroscopy is considered to estimate the rotational gas temperature by adding a small amount of H2 in dry air to better detect OH (A-X) spectra. The rotational temperatures in humid air plasma column (50% of humidity) are larger than those of dry air plasma column by practically 30% near the nozzle of resonant cavity on the axis of the plasma column. This is partly due to attachment heating processes initiated by water vapor. A maximum of the measured absolute nitrogen density is also observed near the nozzle which is also larger for humid air plasma column. The obtained dissociation degrees of molecular nitrogen in both dry and humid air plasma along the air plasma column are lower than the cases where only thermodynamic equilibrium is assumed. This is characteristic of the absence of chemical and energetic equilibria not yet reached in the air plasma column dominated by recombination processes.展开更多
Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-91 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated speci...Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-91 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated specimens in air as well as salt (75wt. % Na2SO4 + 25wt. % NaCl) at 900°C under cyclic conditions. The thermogravimetric technique was used to establish kinetics of corrosion. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive x-ray analysis (SEM/EDAX) techniques were used to analyse the corrosion products. This YSZ overlay coatings enhance resistance to corrosion significantly which can be attributed to formation of zirconium oxides (ZrO2) and yttrium oxide (Y2O3). This coating was more effective in salt environment and there is an extra phase of ZrS.展开更多
Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-22 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated speci...Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-22 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated specimens in air as well as salt (75 wt.% Na2SO4 + 25 wt.% NaCl) at 900°C under cyclic conditions. The thermogravimetric technique was used to establish kinetics of corrosion. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive x-ray analysis (SEM/EDAX) techniques were used to analyse the corrosion products. This YSZ overlay coatings enhance resistance to corrosion significantly which can be attributed to formation of zirconium oxides (ZrO2) and yttrium oxide (Y2O3). This coating was more effective in salt environment and there is an extra phase of ZrS.展开更多
The main purpose of this work is to shed light on the possibility of producing huge amount of energy based on the construction matter-antimatter plasma in a molecular crystal. It is assumed that two beams of isotherma...The main purpose of this work is to shed light on the possibility of producing huge amount of energy based on the construction matter-antimatter plasma in a molecular crystal. It is assumed that two beams of isothermal hydrogen and antihydrogen are injected into a palladium crystal leading to a plasma state composed of particles and antiparticles. The collapse of this state releases a huge amount of energy which can be used as fuel for space shuttles. Thus, the novel system of isothermal pressure interaction enhances the energy power carried out by the quantum ion acoustic soliton (QIAS). In addition to the energy power released from the particle-antiparticle annihilation. The probability of merging the energy from these two cases is available at certain condition. The released energy may be a significant step in solving the energy scape of Tokomak to produce fusion energy. The study starting from the one-dimensional quantum hydrodynamic model (in which the term of electron-positron and proton-antiproton for hydrogen-antihydrogen is included), a Korteweg de Vries equation (kdv) is derived, the QIAS energy experiences and the annihilation energy power are calculated. It is found that the total energy of QIAS and the energy resulting from hydrogen-antihydrogen annihilation are important step towards the establishment of a cold fusion power station.展开更多
X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic r...X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic recombination, collisional ionization and resonance excitation from the neighbouring ion (Al^9+ and Al^11+ ) charge states of the target ion (Al^10+) are considered in the model. In addition, the contributions of different atomic processes to the x-ray spectrum are analysed. The results show that dielectronic recombination, radiative recombination, collisional ionization and resonance excitation, other than direct collisional excitation, are very important processes.展开更多
In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in stra...In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in strain dependent dielectric material incorporating carrier heating (CH) effects. The consideration of CH in modulation and demodulation is prime importance for the adding of new dimension in analysis of amplification of acoustic helicon wave. By using the dispersion relation, threshold pump electric filed and growth rate of unstable mode from the modulation and demodulation of the high power helicon wave well above from the threshold value will be discussed in the present analysis. The numerical analysis is applied to a strain dependent dielectric material, BaTiO3 at room temperature and irradiated with high power helicon wave of frequency 1.78 × 1014 Hz. This material is very sensitive to the pump intensities, therefore during studies, Gaussian shape of the helicon pump wave is considered during the propagation in stain dependent dielectric material and opto-acoustic wave in the form of Gaussian profile (ω0,κ0) is induced longitudinally along the crystallographic plane of BaTiO3. Its variation is caused by the available magnetic field (ωc), interaction length (z) and pulsed duration of interaction (τ). From the analysis of numerical results, the incorporation of CH effect can effectively modify the magnitude of modulation or demodulation of the amplitude of high power helicon laser wave through diffusion process. Not only the amplitude modulation and demodulation of the wave, the diffusion of the CH effectively modifies the growth rate of unstable mode of frequency in BaTiO3. The propagation of the threshold electric field shows the sinusoidal or complete Gaussian profile, whereas this profile is found to be completely lost in growth of unstable mode. It has also been seen that the growth rate is observed to be of the order of 108 - 1010 s-1 but from diffusion of carrier heating, and that its order is enhanced from 1010 - 1012 s-1 with the variation of the magnetized frequency from 1 to 2.5 × 1014 Hz.展开更多
A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two diffe...A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two different benchmarking hot-work die steels were investigated, and then compared in terms of their impact ductility, temper characteristics ,heat conductivity, and thermal stability. The result of the high-temperature friction wear test indicated that oxidative wear was the main mode in high temperature. On the basis of the comparison and test results, the alloying composition of the new hot-work die steel was especially designed. The new die steel showed good performance with good wear-resistant quality, as well as temper hardness and heat conductivity of HRC 50 and 34.3 W/( m ~ K), respectively. Furthermore, without surface plasma nitriding, the die made of the new steel had no obvious galling with 6 142 strokes. After surface plasma nitriding, the die completed 40 000 strokes with good surface. The die life is expected to exceed 200 000 strokes.展开更多
文摘Hot corrosion(HC) of the APS(atomospheric plasma spraying)CoNiCrAlTaSiY coating on a nickel-base superalloy GH864 has been studied. The effect of laser-treatment on hot corrosion resistance was also examined.It was shown that CoNiCrAlTaSiY coating had superior properties in resistance to hot corrosion due to the readiness of the formation of a protective Cr2O3 scale on the coating surface.A model for the mechanism of hot corrosion of this coating has been suggested. Hot corrosion resistance of this coating was significantly increased by the laser treatment simply because the surface of the as sprayed coating was densified by the high power laser beam.
基金This work was supported by the Foundation for the Development of Science and Technology of the Chinese Academy of Engeering Physics under grant No.2014B09036,National Natural Science Foundation of China(Grants Nos.11574034,U1530142,11104017,11371218,11474031,and 11474033)the National Basic Research Program of China under grant No.2013CB922200.
文摘Self-consistent calculations of energy loss for a Ga ion moving in hot Au plasmas are made under the assumption of wide ranges of the projectile energy and the plasma temperature with all important mechanisms considered in detail.The relevant results are found to be quite different from those of an a particle or a proton.One important reason for this is the rapid increasing of the charge state of a Ga ion at plasma temperature.This reason also leads to the inelastic stopping which does not always decrease with the increase of plasma temperature,unlike the case of an a particle.The nuclear stopping becomes very important at high enough plasma temperature due to the heavy reduced mass of a Ga and an Au ion and the above-mentioned reason.The well-known binary collision model[Phys.Rev.126(1962)1]and its revised one[Phys.Rev.A 29(1984)2145]are not working or unsatisfactory in this case.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)
文摘In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.
基金Funded by the National Natural Science Foundation of China (No. 50675165)
文摘In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC ceramic powder used as coating material to obtain different Ni-based SiC alloys coating. Micro-structure and micro-hardness analysis of the coating layer were followed, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70% Ni60, 30% SiC powder has best properties with plasma spray welding, in which the micro-hardness can achieve 1100 HV, meanwhile can improve the thermal property of hot-forging die dramatically.
基金supported by Natural Science Foundation of Chongqing (No. 2008AA4029)Scientific Research Training Program of Chongqing University
文摘The hot dipping process of pure aluminum on H13 steel substrates followed by plasma electrolytic oxidation(PEO) was studied to form alumina ceramic coatings for protective purpose.H13 steel bars were first dipped in pure aluminum melts,and then,a reactive iron-aluminum intermetallic layer grew at the interface between the melt and the steel substrate.The reactive layer was mainly composed of intermetallic Fe-Al(Fe_2Al_5);the thickness of aluminum layer and Fe-Al intermetallic layer were mainly influenced by dipping time(1.5~12.0 min) and dipping temperature(710~760 ℃).After PEO process,uniform Al_2O_3 ceramic coatings were deposited on the surface of aluminized steel.The element distribution,phase composition and morphology of the aluminized layer,and the ceramic coatings were characterized by SEM/EDS and XRD.The distribution of hardness across the composite coating is demonstrated,and the maximum value reaches 1864 HV.The thermal shock resistance of the coated sample is also well improved.
文摘To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.
基金the National Natural Science Foundation of China (No.2001AA333080).
文摘β-Si3N4 powders prepared by self-propagating high-temperature synthesis (SHS) with additions of Y2O3 and Al2O3 were sintered by spark plasma sintering (SPS). The densification, microstructure, and mechanical properties of Si3N4 ceramics prepared using this method were compared with those obtained by hot pressing process. Well densified Si3N4 ceramics with finer and homogeneous microstructure and better mechanical properties were obtained in the case of the SPS technique at 200°C lower than that of hot pressing. The microhardness is 15.72 GPa, the bending strength is 716.46 MPa, and the fracture toughness is 7.03 MPa·m1/2.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11064005 and 51460020the financial support provided by the Key Subject of Atomic and Molecular Physics in Jiangxi Province(2011-1015)
文摘The linear Langmuir and electromagnetic (EM) waves in relativistic hot plasmas are discussed, and the dispersion relations are obtained based on the covariant Maxwell's and fluid equations. When k_BT/mc^2> 1, the effective mass of electrons will be increased obviously. As the results, many other influences are induced, such as the decrease of the plasmas frequency and the critical frequency, the reduction of the electron sound velocity and the electrons' oscillation velocity, and so on. Numerical results show that these influences can affect the dispersion relations of Langmuir and EM waves seriously even in linear regime.
文摘For the first time, absolute densities of atomic nitrogen in its ground state (N4S) have been measured in hot dry and humid air plasma columns under post-discharge regime. The determination of space-resolved absolute densities leads to obtain the dissociation degrees of molecular nitrogen in the plasma. The hot plasmas are generated inside an upstream gas-conditioning cell at 600 mbar when the air gas flow is directly injected at 10 slm in a microwave resonant cavity (2.45 GHz, 1 kW) placed in the downstream side. Density measurements based on laser induced fluorescence spectroscopy with two-photon excitation (TALIF), are more particularly performed along the radial and axial positions of the plasma column. Calibration of TALIF signals is performed in situ (i.e. in the same gas-conditioning cell but without plasma) using an air gas mixture containing krypton. Optical emission spectroscopy is considered to estimate the rotational gas temperature by adding a small amount of H2 in dry air to better detect OH (A-X) spectra. The rotational temperatures in humid air plasma column (50% of humidity) are larger than those of dry air plasma column by practically 30% near the nozzle of resonant cavity on the axis of the plasma column. This is partly due to attachment heating processes initiated by water vapor. A maximum of the measured absolute nitrogen density is also observed near the nozzle which is also larger for humid air plasma column. The obtained dissociation degrees of molecular nitrogen in both dry and humid air plasma along the air plasma column are lower than the cases where only thermodynamic equilibrium is assumed. This is characteristic of the absence of chemical and energetic equilibria not yet reached in the air plasma column dominated by recombination processes.
文摘Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-91 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated specimens in air as well as salt (75wt. % Na2SO4 + 25wt. % NaCl) at 900°C under cyclic conditions. The thermogravimetric technique was used to establish kinetics of corrosion. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive x-ray analysis (SEM/EDAX) techniques were used to analyse the corrosion products. This YSZ overlay coatings enhance resistance to corrosion significantly which can be attributed to formation of zirconium oxides (ZrO2) and yttrium oxide (Y2O3). This coating was more effective in salt environment and there is an extra phase of ZrS.
文摘Yttria-Stabilised Zirconia (YSZ) coatings were deposited on a T-22 boiler steel. NiCrAlY was used as bond coat and YSZ as top coat. Hot corrosion studies were conducted on uncoated as well as plasma spray coated specimens in air as well as salt (75 wt.% Na2SO4 + 25 wt.% NaCl) at 900°C under cyclic conditions. The thermogravimetric technique was used to establish kinetics of corrosion. X-ray diffraction (XRD) and scanning electron microscopy/energy-dispersive x-ray analysis (SEM/EDAX) techniques were used to analyse the corrosion products. This YSZ overlay coatings enhance resistance to corrosion significantly which can be attributed to formation of zirconium oxides (ZrO2) and yttrium oxide (Y2O3). This coating was more effective in salt environment and there is an extra phase of ZrS.
文摘The main purpose of this work is to shed light on the possibility of producing huge amount of energy based on the construction matter-antimatter plasma in a molecular crystal. It is assumed that two beams of isothermal hydrogen and antihydrogen are injected into a palladium crystal leading to a plasma state composed of particles and antiparticles. The collapse of this state releases a huge amount of energy which can be used as fuel for space shuttles. Thus, the novel system of isothermal pressure interaction enhances the energy power carried out by the quantum ion acoustic soliton (QIAS). In addition to the energy power released from the particle-antiparticle annihilation. The probability of merging the energy from these two cases is available at certain condition. The released energy may be a significant step in solving the energy scape of Tokomak to produce fusion energy. The study starting from the one-dimensional quantum hydrodynamic model (in which the term of electron-positron and proton-antiproton for hydrogen-antihydrogen is included), a Korteweg de Vries equation (kdv) is derived, the QIAS energy experiences and the annihilation energy power are calculated. It is found that the total energy of QIAS and the energy resulting from hydrogen-antihydrogen annihilation are important step towards the establishment of a cold fusion power station.
文摘X-ray emission spectra for L-shell of Li-like aluminium ions are simulated by using the flexible atomic code based on the collisional radiative model. Atomic processes including radiative recombination, dielectronic recombination, collisional ionization and resonance excitation from the neighbouring ion (Al^9+ and Al^11+ ) charge states of the target ion (Al^10+) are considered in the model. In addition, the contributions of different atomic processes to the x-ray spectrum are analysed. The results show that dielectronic recombination, radiative recombination, collisional ionization and resonance excitation, other than direct collisional excitation, are very important processes.
文摘In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in strain dependent dielectric material incorporating carrier heating (CH) effects. The consideration of CH in modulation and demodulation is prime importance for the adding of new dimension in analysis of amplification of acoustic helicon wave. By using the dispersion relation, threshold pump electric filed and growth rate of unstable mode from the modulation and demodulation of the high power helicon wave well above from the threshold value will be discussed in the present analysis. The numerical analysis is applied to a strain dependent dielectric material, BaTiO3 at room temperature and irradiated with high power helicon wave of frequency 1.78 × 1014 Hz. This material is very sensitive to the pump intensities, therefore during studies, Gaussian shape of the helicon pump wave is considered during the propagation in stain dependent dielectric material and opto-acoustic wave in the form of Gaussian profile (ω0,κ0) is induced longitudinally along the crystallographic plane of BaTiO3. Its variation is caused by the available magnetic field (ωc), interaction length (z) and pulsed duration of interaction (τ). From the analysis of numerical results, the incorporation of CH effect can effectively modify the magnitude of modulation or demodulation of the amplitude of high power helicon laser wave through diffusion process. Not only the amplitude modulation and demodulation of the wave, the diffusion of the CH effectively modifies the growth rate of unstable mode of frequency in BaTiO3. The propagation of the threshold electric field shows the sinusoidal or complete Gaussian profile, whereas this profile is found to be completely lost in growth of unstable mode. It has also been seen that the growth rate is observed to be of the order of 108 - 1010 s-1 but from diffusion of carrier heating, and that its order is enhanced from 1010 - 1012 s-1 with the variation of the magnetized frequency from 1 to 2.5 × 1014 Hz.
文摘A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two different benchmarking hot-work die steels were investigated, and then compared in terms of their impact ductility, temper characteristics ,heat conductivity, and thermal stability. The result of the high-temperature friction wear test indicated that oxidative wear was the main mode in high temperature. On the basis of the comparison and test results, the alloying composition of the new hot-work die steel was especially designed. The new die steel showed good performance with good wear-resistant quality, as well as temper hardness and heat conductivity of HRC 50 and 34.3 W/( m ~ K), respectively. Furthermore, without surface plasma nitriding, the die made of the new steel had no obvious galling with 6 142 strokes. After surface plasma nitriding, the die completed 40 000 strokes with good surface. The die life is expected to exceed 200 000 strokes.