期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
APPLICATIONS OF PHYSICAL SIMULATION IN THE DEVELOPMENT OF HOT WORKING PROCESSES 被引量:1
1
作者 L. P. Karjalainen (Department of Mechanical Engineering, University of Oulu, Oulu, Finland) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期291-300,共10页
Modelling has become a more and more valuable tool in the design, control and development of steel processing. Empirical regression equations, physically based approachs, artificial neural networks and hybrid models a... Modelling has become a more and more valuable tool in the design, control and development of steel processing. Empirical regression equations, physically based approachs, artificial neural networks and hybrid models are being theied in computer modelling. In all cases, relevant data are necessary, which can be most economically obtained by physical simulation. Physical simulation with a Gleeble simulator has been used in a large number of tasks at the University of Oulu for ten years in cooperotion with the Finnish metals industry. Some examples of these will be described and discussed below, such as the optimization of the recrystallization controlled rolling process, the improvement of the hot strength model for the control of coiling tension and the optimization of continuous strip annealing schedules.Finally,brief remarks will be then on a couple of projects now under way. 展开更多
关键词 physical simulation hot working recrystallization phase transformation continuous annealing
下载PDF
HOT DEFORMATION CHARACTERISTICS AND MICROSTRUCTURE DEVELOPMENT OF Ti-6AI-4V BAR UNDER FORGING CONDITIONS 被引量:1
2
作者 J. N. Aoh and Z. H. Lin (Department of Mechanical Engineering, National Chung Cheng University Minhsiung, Chiayi, Taiwan,China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期310-318,共9页
The uniformity of microstructure distribution across the transverse section of a Ti-6AI-4 V bar afler stepwise radial forging process is a relevant index to the quality of the foaled bar. In this work, hot deformatio... The uniformity of microstructure distribution across the transverse section of a Ti-6AI-4 V bar afler stepwise radial forging process is a relevant index to the quality of the foaled bar. In this work, hot deformation chamcteristics of Ti-6Al-4 V bar in the stepwise radial forging process were investigated in the or+p and g range 6etween 940℃ and 1000℃. Various flow curves and microstructures were obtained by using Gleeble simulation. The deformation process of a bar from initial diameter to a desired reduction in cross section was simulated by using a FEM code ABAQUS combined with the constitutive models obtained from physical simulation. Heat onduction model was coupled to the computation. The principal stresses and final strain istribution of the bar after forging were predicted by the contours obtained from FEM analysis. Together with the results obtained from Gleeble simulation, a map of microstructure distribu- tion on the cross section of the forged bar was constructed. According to the map,recrystallized zone in the center region of the bar was predicted to be approximately 50 to 65% of the total cross section area. 展开更多
关键词 Ti-6Al-4V alloy hot deformation Gleeble simulation finite element method
下载PDF
Head Curvature of Pure Titanium Sheet Influenced by Process Parameters and Controlling in Hot Rolling Process 被引量:1
3
作者 于辉 LI Jun +1 位作者 LIU Ligang 肖宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期444-450,共7页
We investigated the influences of process parameters on the head curvature of pure titanium sheet in hot rolling process and proposed the controlling means. First, the thermal simulation experiments for pure titanium ... We investigated the influences of process parameters on the head curvature of pure titanium sheet in hot rolling process and proposed the controlling means. First, the thermal simulation experiments for pure titanium TA1 were carried out to investigate the hot deformation behaviors of pure titanium in the temperature range of 700-800 ℃ with strain rate range of 1-20 S-1, and the processing map was established to determine optimized deformation parameters. Then, the finite element model has been constructed and used to analyze the effect of process parameters on the direction and severity of head curvature of pure titanium sheet. The process parameters considered in the present study include workpiece temperature, work roll diameter, pass reduction, oxide scale thickness of workpiece surface, and interface friction coefficient. The simulation results show that the workpiece temperature and the interface friction coefficient are the two main factors. The proposed controlling means was carried out on a hot rolling production line and solved the head curvature problem effectively. The rolling practices indicate that the rolling yield is improved greatly. 展开更多
关键词 head curvature hot rolling process parameter thermal simulation pure titanium sheet
下载PDF
Study on Temperature Distribution of Specimens Tested on the Gleeble 3800 at Hot Forming Conditions
4
作者 Tao Gao Long Ma Xiao-Guo Peng 《Journal of Electronic Science and Technology》 CAS 2014年第4期419-423,共5页
Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature his... Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature history and distribution in the specimen. In order to verify the finite element (FE) results, thermal tests are carried out on Gleeble 3800 for a Ti-6Al-4V specimen with a slot to in the centre of the specimen. The effects of the specimen size, heating rate, and air convection on the temperature distribution over the specimen have been investigated. The conclusions can be drawn as: the temperature gradient of the specimen decreases as the specimen size, heating rate, and vacuuming decrease. 展开更多
关键词 Coupled thermal-electrical simulation hot forming thermo-mechanical testing temperaturedistribution.
下载PDF
Computer Simulating Calculation on the Microstructure Evolutions during Hot Strip Rolling of C-Mn Steels
5
作者 Zhenyu LIU Guodong WANG and Qiaing ZHANG(Northeastern University, Shenyang, 110006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期221-224,共4页
The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were ana... The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation 展开更多
关键词 MN Computer Simulating Calculation on the Microstructure Evolutions during hot Strip Rolling of C-Mn Steels FIGURE
下载PDF
Microstructure Evolution of Different Forging Processes for12%Cr Steel During Hot Deformation 被引量:2
6
作者 隋大山 高亮 崔振山 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期606-611,共6页
Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated t... Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated that average grain size became finer with the increasing number of upsetting and stretching.Especially,the size of stretching three times with upsetting twice had the most remarkable effect on refinement,and the size was only 27.36%of the original one.Moreover,the stress model was integrated into the software and finite element models were established.Simulation results demonstrated that the strain at center point of workpiece was far larger than critical strain value in each process,so that dynamic recrystallization(DRX) occurred in each workpiece,which implied DRX could occur for several times with the increasing number of upsetting and stretching,and uniform finer microstructure would be obtained.However,the results also showed that higher temperature was an unfavorable factor for grain refinement,so the times of heating should be limited for workpiece,and as many forging processes as possible should be finished in once heating. 展开更多
关键词 microstructure forging process hot deformation grain size numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部