The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of contro...Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control p...Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.展开更多
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to...In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.展开更多
Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplis...Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplish rehabilitation tasks.However,because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems.In this paper,we use nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP)to design a tracking controller for a PMA-driven lower limb exoskeleton.The dynamics of the system include the PMA actuation and mechanism of the leg orthoses;thus,the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller,joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP.A gradient descent algorithm is employed to solve the optimization problem and generate the control signal.The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.展开更多
The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrati...The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.展开更多
One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neu...One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.展开更多
The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw wate...The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.展开更多
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ...The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.展开更多
In service-oriented computing, process model may serve as a link to connect users’ requirements with Web Services. In this paper, we propose an approach and related key techniques to generate process-oriented require...In service-oriented computing, process model may serve as a link to connect users’ requirements with Web Services. In this paper, we propose an approach and related key techniques to generate process-oriented requirements specification from user’s goal. For this purpose, a requirements description language named SORL will be provided to capture users’ requirements. Then, a unified requirements meta-modeling frame RPGS will be used to construct reusable domain assets, which is the basis of generating requirements specifications. Finally, a set of rules are defined to extract process control structures from users’ requirements described with SORL, so that we can convert requirements description into process-oriented requirements specification smoothly.展开更多
To track and control the changes of process quality attributes in multistage machining processes(MMPs),an e-quality control(e-QC) model is proposed.The e-QC model is defined as a quality information service node with ...To track and control the changes of process quality attributes in multistage machining processes(MMPs),an e-quality control(e-QC) model is proposed.The e-QC model is defined as a quality information service node with e-formalizing technology,whose input/output and intermediate process(that is IPO) are known to other nodes,and its implemention in MMPs is provided.In order to establish the e-QC model,a measuring network is constructed to acquire the original quality data,and the changes of process quality attributes are monitored and diagnosed by the integrated quality analysis tools attached to the e-QC,which can be tracked by information template network in real time.Furthermore,a hierarchical control method is adopted to coordinate e-QCs,in which the quality loss and adjusting cost are used to quantify the opportunities for e-QCs to improve process quality.At last,a prototype is developed to verify the proposed methods.展开更多
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
基金Project(N160704004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20131033)supported by the Ph D Start-up Fund of Natural Science Foundation of Liaoning Province,China
文摘Controlling the looper height and strip tension is important in hot strip mills because these variables affect both the strip quality and strip threading. Many researchers have proposed and applied a variety of control schemes for this problem, but the increasingly strict market demand for strip quality requires further improvements. This work describes a dynamic matrix predictive control(DMC) strategy that realizes the optimal control of a hydraulic looper multivariable system. Simulation experiments for a traditional controller and the proposed DMC controller were conducted using MATLAB/Simulink software. The simulation results show that both controllers acquire good control effects with model matching. However, when the model is mismatched, the traditional controller produces an overshoot of 32.4% and a rising time of up to 2120.2 ms, which is unacceptable in a hydraulic looper system. The DMC controller restricts the overshoot to less than 0.08%, and the rising time is less than 48.6 ms in all cases.
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.
基金Project supported by the National Key Technology Research and Development Program (Grant No.2006BAE03A08)
文摘Control precision of coiling temperature is one of the key factors affecting the profile shape and surface quality during the cooling process of hot rolled steel strip.For this reason,the core of temperature control precision is to establish an effective cooling mathematical model with self-learning function.Starting from this point,a cooling mathematical model with nonlinear structural characteristics is established in this paper for the cooling process of hot rolled steel strip.By the analysis of self-learning ability,key parameters of the mathematical model could be constantly corrected so as to improve temperature control precision and adaptive capability of the model.The site actual application results proved the stable performance and high control precision of the proposed mathematical model,which would lay a solid foundation to improve the steel product qualities.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金Project(50634030) supported by the National Natural Science Foundation of China
文摘In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.
基金supported in part by the National Natural Science Foundation of China(U1913207)the International Science and Technology Cooperation Program of China(2017YFE0128300)the Fundamental Research Funds for the Central Universities(HUST 2019kfyRCPY014)。
文摘Pneumatic muscle actuators(PMAs)are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries,such as strokes,spinal cord injuries,etc.,to accomplish rehabilitation tasks.However,because PMAs have nonlinearities,hysteresis,and uncertainties,etc.,complex mechanisms are rarely involved in the study of PMA-driven robotic systems.In this paper,we use nonlinear model predictive control(NMPC)and an extension of the echo state network called an echo state Gaussian process(ESGP)to design a tracking controller for a PMA-driven lower limb exoskeleton.The dynamics of the system include the PMA actuation and mechanism of the leg orthoses;thus,the system is represented by two nonlinear uncertain subsystems.To facilitate the design of the controller,joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP.A gradient descent algorithm is employed to solve the optimization problem and generate the control signal.The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics.Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
文摘The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.
文摘One synthetical control method of AGC/LPC system based on intelligence control theory-neural networks internal model control method is presented. Genetic algorithm (GA) is applied to optimize the parameters of the neural networks. Simulation results prove that this method is effective.
基金This work was supported by the project 863 ofChina(No.863-511092)
文摘The coagulation process is one of the most important stages in water treatment plant, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, PH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Based on neural network and rule models, an expert system for determining the optimum chemical dosage rate is developed and used in a water treatment work, and the results of actual runs show that in the condition of satisfying the demand of drinking water quality, the usage of coagulant is lowered.
文摘The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.
文摘In service-oriented computing, process model may serve as a link to connect users’ requirements with Web Services. In this paper, we propose an approach and related key techniques to generate process-oriented requirements specification from user’s goal. For this purpose, a requirements description language named SORL will be provided to capture users’ requirements. Then, a unified requirements meta-modeling frame RPGS will be used to construct reusable domain assets, which is the basis of generating requirements specifications. Finally, a set of rules are defined to extract process control structures from users’ requirements described with SORL, so that we can convert requirements description into process-oriented requirements specification smoothly.
基金the National Basic Research Program of China("973")(Grant No.2005CB724106)the National High-Tech Research and Development Program of China("863")(Grant No.2007AA00Z108)
文摘To track and control the changes of process quality attributes in multistage machining processes(MMPs),an e-quality control(e-QC) model is proposed.The e-QC model is defined as a quality information service node with e-formalizing technology,whose input/output and intermediate process(that is IPO) are known to other nodes,and its implemention in MMPs is provided.In order to establish the e-QC model,a measuring network is constructed to acquire the original quality data,and the changes of process quality attributes are monitored and diagnosed by the integrated quality analysis tools attached to the e-QC,which can be tracked by information template network in real time.Furthermore,a hierarchical control method is adopted to coordinate e-QCs,in which the quality loss and adjusting cost are used to quantify the opportunities for e-QCs to improve process quality.At last,a prototype is developed to verify the proposed methods.