期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation
1
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Revealing the grain size dependent hot workability and deformation mechanisms in a Mg-Zn-Y alloy 被引量:1
2
作者 Ruiqing Lu Zhiming Xu +4 位作者 Fulin Jiang Shiwei Xu Dingfa Fu Hui Zhang Jie Teng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1461-1471,共11页
Despite the industrial significance of grain size for enhancing mechanical properties and formability,the in-depth deformation mechanisms at elevated temperature are still unclear.To investigate the functions of grain... Despite the industrial significance of grain size for enhancing mechanical properties and formability,the in-depth deformation mechanisms at elevated temperature are still unclear.To investigate the functions of grain size on hot workability and deformation mechanisms,three groups of Mg-1.2Zn-0.2Y alloy specimens with different grain sizes were hot compressed and then studied by combining constitutive model,processing map and microstructural observations.The results showed that the enhanced hot workability accompanying low deformation activation energy and small instability regime was obtained with refined grain size.During hot deformation,the decreased grain size in Mg1.2Zn-0.2Y alloy mainly improved the plastic deformation homogeneity,especially for the weakened local straining around grain boundaries.As a result,the dynamic recrystallization nucleation and texture development at lower strain level were influenced by the initial grain size.At higher strain magnitude,the growth and coarsening of dynamic recrystallized grains would further release strain localization and improve hot workability,while the texture was less impacted.Further,unlike the primary basal slip and deformation twinning in the specimen with coarse grain at low temperature,non-basal slips of dislocations were initiated with less deformation twins in the specimens with refined grain size. 展开更多
关键词 Mg-Zn-Y alloy hot workability Plastic deformation Grain size TEXTURE
下载PDF
Hot deformation behavior and globularization mechanism of Ti-6Al-4V-0.1B alloy with lamellar microstructure 被引量:7
3
作者 Yang Yu Bai-Qing Xiong +1 位作者 Song-Xiao Hui Wen-Jun Ye 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期122-128,共7页
Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and str... Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and strain rate range of 0.011.00 s1. The results show that the peak flow stress and steady stress are sensitive to the strain rate and temperature. The value of deformation activation energy is 890.49 kJmo11 in (a+β) region. Dynamic recrystallization is the major deformation mecha nism. Flow softening is dominated by dynamic recrystallization at 850950 ℃. TiB particles promote the recrystallization of laths. Globularization processes consist of four steps: for mation of subgrain after dynamic recovery in a plates; subgrain boundary migration caused by interracial instability; interfacial migration promoting phase wedge into a phase; disintegrating of a laths by diffusion processes; and grain boundary sliding. Globularization mechanisms during hot deformation processes of the Ti6A14V0.1B alloy with lamellar structure are continuous dynamic recrystallization. 展开更多
关键词 Ti-6A1-4V-0.1B hot deformation Lamellarmicrostructure Globularization mechanism
下载PDF
Deformation mechanism of the spray formed 70Si30Al alloy during hot compression 被引量:1
4
作者 WEI Yanguang XIONG Baiqing ZHANG Yong'an LIU Hongwei WANG Feng ZHU Baohong 《Rare Metals》 SCIE EI CAS CSCD 2007年第1期56-61,共6页
The deformation mechanism of the spray formed 70Si30Al alloy was studied by hot compression on a Gleeble-1500 test machine. It is shown that hot deformation of the spray formed 70Si30Al alloy is achieved by liquid flo... The deformation mechanism of the spray formed 70Si30Al alloy was studied by hot compression on a Gleeble-1500 test machine. It is shown that hot deformation of the spray formed 70Si30Al alloy is achieved by liquid flow due to isostatic pressure and movement of solid particles due to shear force. Deformation condition depends on the nucleation rate and closure rate of the cavities. The flow stress slightly varies when the difference between the nucleation rate and closure rate of the cavities is small; however, it decreases when the nucleation rate of the cavities is greater than the closure rate of the cavities. 展开更多
关键词 70Si30Al alloy spray forming hot compression deformation mechanism
下载PDF
Hot compressive deformation behaviors and micro-mechanisms of TA15 alloy 被引量:3
5
作者 LIU Yong,ZHU Jingchuan,WANG Yang,and ZHAN Jiajun School of Materials Science and Technology,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期162-167,共6页
The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature l... The hot deformation behaviors of TA15 alloy,as well as the microstructure obtained after compressive deformation,were investigated.The results show that TA15 alloy exhibits a peak stress when deformed at temperature lower than 900 ℃,implying recrystallization characteristics.However,steady flow stress-stain behavior is observed without peak stress when deformation is employed at temperature higher than 900 ℃,showing recovery characteristics.Micro-deformation band appears at deformation temperature of 750 ℃,and equiaxed grains are found at 800 ℃,implying the occurrence of recrystallization.When deformed at 925 ℃,the specimen shows the recovery characteristics with dislocation networks and sub-grain boundaries. 展开更多
关键词 TA15 alloy hot compressive deformation micro-mechanisms
下载PDF
HOT PRESSING AND ITS DEFORMATION MECHANISM OF Ag-SHEATHED DPSCCO SUPERCONDUCTING TAPES
6
作者 Ma, Yanwei Wang, Xianjin Wang, Zutang 《中国有色金属学会会刊:英文版》 EI CSCD 1998年第1期89-92,共4页
HOTPRESSINGANDITSDEFORMATIONMECHANISMOFAgSHEATHEDDPSCCOSUPERCONDUCTINGTAPES①MaYanwei,WangXianjinandWangZuta... HOTPRESSINGANDITSDEFORMATIONMECHANISMOFAgSHEATHEDDPSCCOSUPERCONDUCTINGTAPES①MaYanwei,WangXianjinandWangZutangDepartmentofMe... 展开更多
关键词 Ag-sheathed SUPERCONDUCTING TAPES hot PRESSING deformation mechanismcritical current density
下载PDF
Influence of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Hot Rolled Multiphase Steel 被引量:6
7
作者 Zhuang LI Di WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期763-768,共6页
Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ... Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes. 展开更多
关键词 hot deformation AUSTEMPERING hot rolled multiphase steels Mechanical properties
下载PDF
Mechanical Behaviors and Microstructural Characteristics of TC11 Alloy during Hot Deformation 被引量:4
8
作者 孙新军 白秉哲 +1 位作者 顾家林 陈南平 《Rare Metals》 SCIE EI CAS CSCD 2000年第2期101-109,共9页
The mechanical behaviors and the microstructural characteristics of TC11 alloy with quenched martensite microstructure during hot compressive deformation were investigated. It shows that at various temperatures and st... The mechanical behaviors and the microstructural characteristics of TC11 alloy with quenched martensite microstructure during hot compressive deformation were investigated. It shows that at various temperatures and strain rates, the stress strain curves firstly exhibit strain hardening, then strain softening and finally reach the steady deformation state; in the meanwhile, the initial lamellar microstructure is transformed into the equiaxed and uniform one through dynamic recrystallization. It shows that the present TC11 alloy has different Z D relationships in relatively lower temperature (RLT) range and relatively higher temperature (RHT) range, which is believed to be due to different deformation activation energies. During RHT deformation, dynamic recrystallization occurs in both α phases and β phases, but during RLT deformation, dynamic recrystallization only occurs in α phases and in the meanwhile β phases undergo a process of precipitation and growth. 展开更多
关键词 Z D relationship hot deformation TC11 alloy Mechanical behaviors MICROSTRUCTURE
下载PDF
Hot deformation behavior of a Cr-containing low carbon steel in the ferrite range 被引量:1
9
作者 Hai-feng Dong Da-yong Cai +2 位作者 Qing-xiang Yang Yue Zhang Bo Liao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第5期549-553,共5页
A low carbon steel with Cr addition of 0.46wt% combined with trace elements of Mn and Ti was studied. The apparent activation energy of deformation and the hot deformation equation of the steel in the ferritic range w... A low carbon steel with Cr addition of 0.46wt% combined with trace elements of Mn and Ti was studied. The apparent activation energy of deformation and the hot deformation equation of the steel in the ferritic range were determined by means of single hot compression tests. The hot-rolled strip of 3 mm in thickness rolled in the ferritic range was obtained using a laboratory hot rolling mill. The mechanical properties show that the values of yield strength and ultimate tensile strength are 230 and 330 MPa, respectively, and the elongation is 33%. The average r-value is 1.1. Large polygonal ferrite recrystallization grains with about 40 grn in size and the strong { 111 } recrystallization texture can be obtained in the hot-rolled strip. 展开更多
关键词 low carbon steel hot deformation ferritie rolling mechanical properties TEXTURE
下载PDF
Hot Deformation Behavior and Processing Maps of As-cast Mn18Cr18N Steel 被引量:3
10
作者 陈慧琴 wang zhenxing +2 位作者 qin fengming jia peijie zhao xiaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期935-943,共9页
Hot deformation behavior of as-cast Mn18Cr18 N austenitic stainless steel was studied in the temperature range of 950-1200 ℃ and strain rate range of 0.001-1 s^(-1) using isothermal hot compression tests. The true ... Hot deformation behavior of as-cast Mn18Cr18 N austenitic stainless steel was studied in the temperature range of 950-1200 ℃ and strain rate range of 0.001-1 s^(-1) using isothermal hot compression tests. The true stress-strain curves of the steel were characterized by hardening and subsequent softening and varied with temperatures and strain rates. The hot deformation activation energy of the steel was calculated to be 657.4 k J/mol, which was higher than that of the corresponding wrought steel due to its as-cast coarse columnar grains and heterogeneous structure. Hot processing maps were developed at different plastic strains, which exhibited two domains with peak power dissipation efficiencies at 1150 ℃/0.001 s^(-1) and 1200 ℃/1 s^(-1), respectively. The corresponding microstructures were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD). It has been confirmed that dynamic recrystallization(DRX) controlled by dislocation slipping and climbing mechanism occurs in the temperature and strain rate range of 1050-1200 ℃ and 0.001-0.01 s^(-1); And DRX controlled by twinning mechanism occurs in the temperature and strain rate range of 1100-1200 ℃, 0.1-1 s^(-1). These two DRX domains can serve as the hot working windows of the as-cast steel at lower strain rates and at higher strain rates, respectively. The processing maps at different strains also exhibit that the instability region decreases with increasing strain. The corresponding microstructures and the less tensile ductility in the instability region imply that the flow instability is attributed to flow localization accelerated by a few layers of very fine recrystallized grains along the original grain boundaries. 展开更多
关键词 Mn18Cr18N steel hot deformation hot processing map dynamic recrystallization hot workability
下载PDF
Effects of Austempering after Hot Deformation on the Mechanical Properties of Hot Rolled Si-Mn TRIP Steel Sheets 被引量:2
11
作者 LIZhuang ZHANGPing-li WUDi 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期248-251,共4页
Excellent mechanical properties are obtained by austempering after hot deformation without subsequent heat treatment in the present Si-Mn TRIP steel sheets. Isothermal holding time after finishing rolling has affected... Excellent mechanical properties are obtained by austempering after hot deformation without subsequent heat treatment in the present Si-Mn TRIP steel sheets. Isothermal holding time after finishing rolling has affected the mechanical properties of this steel. The results show that the sample exhibits a good combination of ultimate tensile strength and total elongation when it is held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase of isothermal holding time, and a further increase in the holding duration results in a decrease of it. The tensile strength, total elongation and strength ductility reach the maximum values (774MPa, 33% and 25542MPa% respectively) for this sort of hot rolled Si-Mn TRIP steel using the optimal technology. 展开更多
关键词 热轧 精加工辊轧 热变形 残留奥氏体 TRIP 机械特性 Si-Mn钢
下载PDF
Microstructure and Property of High Carbonic-Chromium Cast Steel with Different Hot Deformation Ratio 被引量:3
12
作者 XUTao WANGJiu-liang +2 位作者 ZHANGRun-jun CHAOGuo-hua LIUJian-hua 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2004年第1期37-41,共5页
The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-c... The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation,and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %,which leads to the morphology change of eutectic carbide and the precipitation of granular carbides. 展开更多
关键词 high carbonic-chromium cast steel hot deformation ratio microstructure mechan-ical property
下载PDF
Effect of Cooling Rate after hot Deformation on Structure and Mechanical Properties of Low Alloy Wear Resistance Cast iron
13
作者 刘剑平 李丽霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期258-261,共4页
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro... The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed. 展开更多
关键词 hot deformation low alloy wear resistance cast iron cooling rate structure and mechanical properties rare earths
下载PDF
干热河谷气候环境对碾压混凝土性能的影响研究
14
作者 刘远峰 张天伟 +2 位作者 李志 张政男 戈雪良 《水力发电》 CAS 2024年第5期65-69,共5页
采用大型步入式极端气候模拟器模拟干热河谷地区低湿度、强日照复杂气候环境,深入开展了大坝碾压混凝土力学性能、体积变形性能演化规律研究。结果表明,干热河谷气候环境对大坝三级配碾压混凝土的立方体抗压强度、轴压性能、轴拉性能等... 采用大型步入式极端气候模拟器模拟干热河谷地区低湿度、强日照复杂气候环境,深入开展了大坝碾压混凝土力学性能、体积变形性能演化规律研究。结果表明,干热河谷气候环境对大坝三级配碾压混凝土的立方体抗压强度、轴压性能、轴拉性能等均存在较大影响,混凝土标准养护时间越短,干热河谷气候环境作用下混凝土的力学性能下降越明显;干热河谷气候环境下大坝三级配碾压混凝土的干缩变形呈双曲线模型演化规律,在干热河谷地区实施碾压混凝土工程应特别注意加强早期养护。 展开更多
关键词 碾压混凝土 干热河谷气候环境 力学性能 变形性能 演化规律
下载PDF
Deformation Mechanism and Hot Workability of Extruded Magnesium Alloy AZ31
15
作者 Zhao-Yang Jin Nan-Nan Li +3 位作者 Kai Yan Jian Wang Jing Bai Hongbiao Dong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第1期71-81,共11页
Using the flow stress curves obtained by Gleeble thermo-mechanical testing, the processing map of extruded magnesium alloy AZ31 was established to analyze the hot workability. Stress exponent and activation energy wer... Using the flow stress curves obtained by Gleeble thermo-mechanical testing, the processing map of extruded magnesium alloy AZ31 was established to analyze the hot workability. Stress exponent and activation energy were calculated to characterize the deformation mechanism. Then, the effects of hot deformation parameters on deformation mechanism, microstructure evolution and hot workability of AZ31 alloy were discussed. With increasing deformation temperature, the operation of non-basal slip systems and full development of dynamic recrystallization (DRX) contribute to effective improvement in hot workability of AZ31 alloy. The influences of strain rate and strain are complex. When temperature exceeds 350 ℃, the deformation mechanism is slightly dependent of the strain rate or strain. The dominant mechanism is dislocation cross-slip, which favors DRX nucleation and grain growth and thus leads to good plasticity. At low temperature (below 350 ℃), the deformation mechanism is sensitive to strain and strain rate. Both the dominant deformation mechanism and inadequate development of DRX deteriorate the ductility of AZ31 alloy. The flow instability mainly occurs in the vicinity of 250 ℃ and 1 s^-1. 展开更多
关键词 hot workability. deformation mechanism Dynamic recrystallization Activation energy Magnesium alloy
原文传递
高熵合金热变形行为研究进展
16
作者 于秋颖 谢孝昌 +3 位作者 兰博 张利伟 李能 熊华平 《材料工程》 EI CAS CSCD 北大核心 2024年第1期45-56,共12页
高熵合金颠覆了传统合金以一、两种元素为主的设计思想,其多主元和高混合熵的设计理念赋予了其高强、高韧、耐蚀、耐高温和抗氧化等优异的性能,已成为新型高性能结构材料领域的一个研究热点。高熵合金研发必然要走向工程应用,热加工是... 高熵合金颠覆了传统合金以一、两种元素为主的设计思想,其多主元和高混合熵的设计理念赋予了其高强、高韧、耐蚀、耐高温和抗氧化等优异的性能,已成为新型高性能结构材料领域的一个研究热点。高熵合金研发必然要走向工程应用,热加工是其中进一步调控组织性能的重要途径,表征热加工性能的热变形行为是一个新的研究重点和热点。本文从高熵合金热变形研究的现状出发,首先,将高熵合金按相结构进行分类总结,介绍其热变形本构关系和流变应力预测模型。然后,分析FCC,FCC+BCC和BCC结构高熵合金的热变形组织演变,系统综述热变形过程中的变形机制和再结晶机制。最后,强调了高熵合金热变形研究所面临的挑战,并对其未来研究方向提出以下建议:建立基于高熵合金物理性质的本构关系和结构特征的再结晶模型;加强不同制备工艺条件下和复杂载荷作用下的热变形行为研究,突破高熵合金关键制备工艺。 展开更多
关键词 高熵合金 热变形 本构关系 组织演变 变形机制 再结晶机制
下载PDF
Influence of hot isostatic pressing on microstructure,properties and deformability of selective laser melting TC4 alloy 被引量:1
17
作者 Tai-qi Yan Bing-qing Chen +1 位作者 Xia Ji Shao-qing Guo 《China Foundry》 SCIE CAS 2021年第4期389-396,共8页
The influence of different hot isostatic pressing regimes on microstructure,phase constitution,microhardness,tensile properties and deformability of TC4 alloy fabricated by selective laser melting(SLM)technology was s... The influence of different hot isostatic pressing regimes on microstructure,phase constitution,microhardness,tensile properties and deformability of TC4 alloy fabricated by selective laser melting(SLM)technology was studied.The results show that the microstructure of SLM TC4 alloy is composed of acicular martensiteα’phase,and the sample exhibits high microhardness and strength,but low plasticity.After hot isostatic pressing,acicular martensiteα’phase transforms intoα+βphase,and with the increase of hot isostatic pressing temperature and duration,αphase with coarse lath is gradually refined,and the proportion ofαphase is gradually reduced.Because of the change of phase constitution in SLM TC4 alloy after hot isostatic pressing,the grain refinement strengthening is weakened,the density of dislocation is reduced,so that both microhardness and tensile strength are decreased by around 20%,the elongation is increased by more than about 70%,even over 100%,compared with as-deposited TC4 alloy.When the hot isostatic pressing regime is 940°C/3 h/150 MPa,the tensile strength and the elongation achieve optimal match,which are about890 MPa and around 14.0%in both directions.The fracture mechanism of alloy after 940 oC/3 h/150 MPa HIP is dultile fracture.Hot isostatic pressing causes concave deformation of SLM TC4 alloy thin-walled frames,and the deformation degree increases with the increase of temperature. 展开更多
关键词 selective laser melting TC4 alloy hot isostatic pressing MICROSTRUCTURE mechanical properties DEFORMABILITY
下载PDF
Thermo-mechanical coupled analysis of hot ring rolling process 被引量:5
18
作者 孙志超 杨合 欧新哲 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第5期1216-1222,共7页
A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HR... A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HRR were simulated and the effects of process parameters on them were analyzed.The results show that the deformation nonuniformity of ring blank increases with the increase of the rotational speed of driver roll and friction factor or the decrease of the feed rate of idle roll and initial temperature of ring blank.The temperature nonuniformity of ring blank decreases with the increase of the feed rate of idle roll or the decrease of initial temperature of ring blank and friction factor.There is an optimum rotational speed of driver roll under which the temperature distribution of ring blank is the most uniform.The results obtained can provide a guide for forming parameters optimization and quality control. 展开更多
关键词 热轧 温度分布 变形不均匀性 FEM
下载PDF
Formation Mechanism in Alloy Steel Rolling Process Using Thermo-mechanical Coupling Method
19
作者 杨理诚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期422-426,共5页
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe... Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters. 展开更多
关键词 thermo-mechanical coupling temperature field deformation mechanism hot rolling process
下载PDF
Microstructure and properties of hot extruded AZ31-0.25%Sb Mg-alloy
20
作者 田素贵 王岭 +1 位作者 K.Y.SHON K.H.KIM 《中国有色金属学会会刊:英文版》 CSCD 2008年第A01期17-21,共5页
The effects of hot extrusion treatment on the microstructure and mechanical properties of AZ31-0.25%Sb Mg alloy were investigated by means of mechanical properties measurement and microstructure observation.The result... The effects of hot extrusion treatment on the microstructure and mechanical properties of AZ31-0.25%Sb Mg alloy were investigated by means of mechanical properties measurement and microstructure observation.The results show that the microstructure of AZ31-0.25%Sb Mg alloys consists ofα-Ms matrix,Mg_(17)Al_(12) and Mg_3Sb_2 phases.The ultimate tensile strength (UTS) and yield tensile strength(YTS) of the alloy are obviously enhanced by hot extrusion treatment,and the enhanced extent of UTS and YTS increases with the decrease of hot extrusion temperature,moreover,the YTS value of the alloy at RT,after extruded at 220℃,increases up to 131.4%,which attributes to the finer grains resulted from the dynamic recrystallization occurred during hot extrusion.As hot extrusion goes on,the slipping and concentration of dislocations continue to occur within the finer grains,which promotes the formation of the subgrains in the alloy.The deformation features of the extruded alloy during tensile deformation at RT are the twinning deformation and dislocation slipping in the twinning regions.Moreover,the deformation mechanisms of the alloy are a dislocation activation on the basal plane and a+c dislocation activation on the pyramidal planes. 展开更多
关键词 镁合金 高温 挤压 处理 微观结构
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部