The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz...The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.展开更多
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update th...The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm.展开更多
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ...Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.展开更多
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ...This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.展开更多
In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize...In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize MF is always rather complex even difficult. So, to study and develop an effectual aglorithm for MF optimization is a good topic. Allow for the inner advantages of genetic algorithm (GA), it is adopted in the algorithm .The principle and executive procdeure are first presented. Then it is applied in the fuzzy control system of a typical plant. Results of real time run show that the control strategy is encouraging, and the developed algorithm is practicable.展开更多
A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows fo...A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust.展开更多
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall...This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.展开更多
In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by t...In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.展开更多
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg...Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.展开更多
In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuri...In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA.展开更多
Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined...Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.展开更多
For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system ...For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully, and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.展开更多
A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was...A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was used for traffic condition recognition based on ten parameters of each driving cycle. The DCR was utilized for optimization of the HEV control parameters using a genetic-fuzzy approach. A fuzzy logic controller (FLC) was designed to be intelligent to manage the engine to work in the vicinity of its optimal condition. The fuzzy membership function parameters were optimized using the genetic algorithm (GA) for each driving cycle. The result is that the DCR_ fuzzy controller can reduce the fuel consumption by 1. 9%, higher than only CYC _ HWFET optimized fuzzy (0.2%) or CYC _ WVUSUB optimized fuzzy (0.7%). The DCR_ fuzzy method can get the better result than only optimizing one cycle on the complex real traffic conditions.展开更多
Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while kee...Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.展开更多
A linguistic self-organizing controller using genetic algorithm is presented, whose control policy is able to generate, develop and improve. The scaling factors can be chosen automatically.Optimizing the scaling facto...A linguistic self-organizing controller using genetic algorithm is presented, whose control policy is able to generate, develop and improve. The scaling factors can be chosen automatically.Optimizing the scaling factors by genetic algorithm instead of trial or experimental method which is often used in conventional linguistic self-organizing controller eliminates the drawback of an exhausive search of the GE*GC*GU space by human operator, and also produces the better system response and a set of better control rules. A number of simulations on linear dynamic systems as well as non-linear systems such as second order process with a random disturbance, third order process with time lags and the cart-pole balancing problem etc. are described in this paper, which shows that the controller has strong adaptive properties and gives better performance than that of the conventional linguistic self-organizing controller.展开更多
Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to contro...Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization.展开更多
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character...In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.展开更多
文摘The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP.
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
文摘The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm.
文摘Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.
文摘This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust.
文摘In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize MF is always rather complex even difficult. So, to study and develop an effectual aglorithm for MF optimization is a good topic. Allow for the inner advantages of genetic algorithm (GA), it is adopted in the algorithm .The principle and executive procdeure are first presented. Then it is applied in the fuzzy control system of a typical plant. Results of real time run show that the control strategy is encouraging, and the developed algorithm is practicable.
文摘A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust.
文摘This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.
基金Supported by the National Science and Technology Supporting Program(No.2012BAF13B05-1)National Natural Science Foundation(No.51105009)Beijing Natural Science Foundation(No.3113025)
文摘In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste.
文摘Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.
基金supported by Shanghai Pujiang Pro-gram(2019PJC062)the Natural Science Foundation of Shandong Province(ZR2021MG003)+2 种基金the Research Project on Undergraduate Teaching Reform of Higher Education in Shandong Province(No.Z2021046)the National Natural Science Foundation of China(51508319)the Nature and Science Fund from Zhejiang Province Ministry of Education(Y201327642).
文摘In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA.
基金Supported by the National Natural Science Foundation of China(20776042) the National High Technology Research and Development Program of China(2007AA04Z164)+3 种基金 the Doctoral Fund of Ministry of Education of China(20090074110005) the Program for New Century Excellent Talents in University(NCET-09-0346) the"Shu Guang"Project(095G29) Shanghai Leading Academic Discipline Project(B504)
文摘Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained.
文摘For nonlinear hydraulic roll bending control, a new fuzzy intelligent control method was proposed based on the genetic neural network. The method taking account of dynamic and static characteristics of control system has settled the problems of recognizing and controlling the unknown, uncertain and nonlinear system successfully, and has been applied to hydraulic roll bending control. The simulation results indicate that the system has good performance and strong robustness, and is better than traditional PID and neural-fuzzy control. The method is an effective tool to control roll bending force with increased dynamic response speed of control system and enhanced tracking accuracy.
文摘A genetic-fuzzy HEV control strategy based on driving cycle recognition (DCR) was built. Six driving cycles were selected to represent different traffic conditions e.g. freeway, urban, suburb. A neural algorithm was used for traffic condition recognition based on ten parameters of each driving cycle. The DCR was utilized for optimization of the HEV control parameters using a genetic-fuzzy approach. A fuzzy logic controller (FLC) was designed to be intelligent to manage the engine to work in the vicinity of its optimal condition. The fuzzy membership function parameters were optimized using the genetic algorithm (GA) for each driving cycle. The result is that the DCR_ fuzzy controller can reduce the fuel consumption by 1. 9%, higher than only CYC _ HWFET optimized fuzzy (0.2%) or CYC _ WVUSUB optimized fuzzy (0.7%). The DCR_ fuzzy method can get the better result than only optimizing one cycle on the complex real traffic conditions.
基金Supported by Basic Research Foundation of National Defence (No. B0203-031)
文摘Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.
文摘A linguistic self-organizing controller using genetic algorithm is presented, whose control policy is able to generate, develop and improve. The scaling factors can be chosen automatically.Optimizing the scaling factors by genetic algorithm instead of trial or experimental method which is often used in conventional linguistic self-organizing controller eliminates the drawback of an exhausive search of the GE*GC*GU space by human operator, and also produces the better system response and a set of better control rules. A number of simulations on linear dynamic systems as well as non-linear systems such as second order process with a random disturbance, third order process with time lags and the cart-pole balancing problem etc. are described in this paper, which shows that the controller has strong adaptive properties and gives better performance than that of the conventional linguistic self-organizing controller.
文摘Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization.
基金The National Natural Science Foundation of China(No.60972001)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ_0163)the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1212)
文摘In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.