It is shown that the increase in the current of an asymmetric p-n-junction, caused by perturbation of potential barrier height and increasing recombination current in a strong microwave field, is suppressed by light g...It is shown that the increase in the current of an asymmetric p-n-junction, caused by perturbation of potential barrier height and increasing recombination current in a strong microwave field, is suppressed by light generated photo carriers, leading to the displacement of current-voltage characteristics of p-n-junction into the direction of smaller current values.展开更多
For the first time the effect of light on the CVC of strained p-n-junction in a strong microwave field is examined. It is shown that the deformation and the microwave field increase the current through p-n-junction, a...For the first time the effect of light on the CVC of strained p-n-junction in a strong microwave field is examined. It is shown that the deformation and the microwave field increase the current through p-n-junction, and the light decreases it. The mechanism of this phenomenon is explained by the fact that under heating of the charge carriers by microwave field the recombination current arises, and under the action of light the generation current arises which are directed oppositely. And under the influence of the deformation the band gap of the semiconductor will be changed.展开更多
文摘It is shown that the increase in the current of an asymmetric p-n-junction, caused by perturbation of potential barrier height and increasing recombination current in a strong microwave field, is suppressed by light generated photo carriers, leading to the displacement of current-voltage characteristics of p-n-junction into the direction of smaller current values.
文摘For the first time the effect of light on the CVC of strained p-n-junction in a strong microwave field is examined. It is shown that the deformation and the microwave field increase the current through p-n-junction, and the light decreases it. The mechanism of this phenomenon is explained by the fact that under heating of the charge carriers by microwave field the recombination current arises, and under the action of light the generation current arises which are directed oppositely. And under the influence of the deformation the band gap of the semiconductor will be changed.