The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surf...The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.展开更多
Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium ...Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.展开更多
A new type of hot-rolled transformation induced plasticity (TRIP) steel with 2.3%AI was developed to replace conventional Si-bearing TRIP steel to improve surface quality of the steel sheet. The relationship between...A new type of hot-rolled transformation induced plasticity (TRIP) steel with 2.3%AI was developed to replace conventional Si-bearing TRIP steel to improve surface quality of the steel sheet. The relationship between retained austenite volume fraction and hot-rolling processing was researched by Gleeble-2000 thermo-dynamic test for the Al-bearing steel. The experimental result showed that aluminum played an important role on retaining austenite and the volume fraction increased from 4.4% to 7.5% as coiling temperature increased from 350℃ to 450℃, while coiling temperature had a stronger effect on retaining austenite than finishing rolling temoerature.展开更多
In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or regi...In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or region. In this paper, properties, microstructures and precipitate morphology of hot-rolled iF steel sheets are described..展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production...In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a cooling experimental instrument in the end. The experiments show that high initial coolingtemperature, discontinuous cooling style, and long cooling time can improve mechanical property of cooling coilsand shorten cooling time. The CC coils experiments cover the different steel grades, so that CC process effects onhot-rolled coils may be predicted and controlled actively.展开更多
The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling ...The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.展开更多
Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-micro...Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.展开更多
The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basi...The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.展开更多
The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decompositi...The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.展开更多
In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mecha...In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.展开更多
Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperat...Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.展开更多
The thermal evolution of steel coil during cooling was simulated and investigated by the use of in-house Q-CSP software. The dependence of the thermal evolution of steel coil on cooling methods, temperature distributi...The thermal evolution of steel coil during cooling was simulated and investigated by the use of in-house Q-CSP software. The dependence of the thermal evolution of steel coil on cooling methods, temperature distribution of the strip before coiling, coil size and steel grades was also discussed. The study plays a significant role in helping steel makers to better understand and control the cooling process.展开更多
The effects of hot-strip coiling temperature on Ti(C,N) precipitation, texture and hydrogen permeation behavior in DC06 EK enamel steel were investigated by TEM, EBSD test and electrochemical hydrogen permeation exp...The effects of hot-strip coiling temperature on Ti(C,N) precipitation, texture and hydrogen permeation behavior in DC06 EK enamel steel were investigated by TEM, EBSD test and electrochemical hydrogen permeation experiment. It was found that the Ti(C,N) particles in hot-strip coarsened with increasing coiling temperature, whereas after cold-rolling and annealing, the size difference of Ti(C,N) particles was lessened. The hot-strip coiling temperature has a significant impact on the recrystallized texture in the subsequent cold-rolled and annealed sheet. Hot-strip using high temperature(700 ℃) coiling leads to strong {111} recrystallized texture in annealed sheet, with peak intensity 9.2. On the contrary, in annealed sheets using hot-strip coiling at 650 ℃, their {111} recrystallized textures were weaker, which was also reflected in their rmvalues. Even though the hydrogen diffusion coefficient is slightly lower(7.76×10^(-5) mm^2/s) in annealed sheet using low temperature coiling(600 ℃), appropriately higher coiling temperature is more suitable for DC06 EK enamel steel combining both good drawability and fish-scale resistance.展开更多
The effect of coiling temperatures on the evolution of texture in Ti-IF steel during ferritic hot rolling, cold rolling and annealing was studied. It was found that texture evolution at high temperature coiling is abs...The effect of coiling temperatures on the evolution of texture in Ti-IF steel during ferritic hot rolling, cold rolling and annealing was studied. It was found that texture evolution at high temperature coiling is absolutely different from that at low temperature one. The hot band texture includes a strong α-fiber as well as a weak γ-fiber after ferritic hot rolling and low temperature coiling. Both of them intensify after cold rolling and a γ-fiber with peak at {111}〈112〉 is the main texture of annealed samples. However, the main component of the hot band texture after high temperature coiling is v-fiber. After cold rolling, the intensity of γ texture reduces; α fiber (except {111}〈110〉 component) intensifies and a strong and well-proportioned γ-fiber forms in the annealed samples.展开更多
The sensitivity of magnetic Barkhausen noise (MBN) profile to changes in the excitation field strength and the number of turns of the detection coil was investigated in inhomogeneous material. Generally, the 0.5 mm ca...The sensitivity of magnetic Barkhausen noise (MBN) profile to changes in the excitation field strength and the number of turns of the detection coil was investigated in inhomogeneous material. Generally, the 0.5 mm case depth EN 36 steel specimen shows a double peak profile indicative of inhomogeneity through the detected depth the magnetized landscape. Various excitation field amplitudes were applied to the specimen and the induced MBN emission was analyzed for each magnetizing current. Excitation field at the lowest level induced an MBN emission of two peaks of equivalent heights. The first peak occurs at lower field than the second peak in the magnetization period. As the excitation field increased, the height of both peaks increased but the second peak increased in a higher rate than that of the first peak. Beyond certain excitation level, both peaks began to saturate and no increase in the MBN intensity was observed with increased excitation field strength. However, peak position and the number of Barkhausen events, indicated linearly as a function of the applied field strength. The experiment also establishes that the number of turns in the detection coil is important parameter which controls the height of the first peak. Low field peak height increases as the number of turn of the detection coil increases. The results indicate that the potential difference applied to the electromagnet and the sensitivity of the detection coil, determine the MBN profile characteristics.展开更多
The effects of cooling rate and coiling temperature on microstructure and mechanical properties of a plain carbon steel were investigated by combining metallography and tensile experiments. The results indicate that f...The effects of cooling rate and coiling temperature on microstructure and mechanical properties of a plain carbon steel were investigated by combining metallography and tensile experiments. The results indicate that ferrite grain size is refined and bainite transformation occurs to ensure high strength and elongation, as the cooling rate is quick enough. Yield strength and tensite strength improve with the decreased finish cooling temperature, but the elongation decreases too significantly to meet the requirements. Thus, the cooling rate must be quick enough, and the appropriate coiling temperature should be carefully selected to obtain refined ferrite and a small amount of bainite to improve the strength while the plasticity is also ensured. Under this condition, the Mn element concentration can be reduced to save cost or produce higher strength steel with same chemical composition.展开更多
Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flex...Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.展开更多
The coil cooling and its role in a hot strip mill were reviewed. A mathematical model was developed to describe and analyze the thermal history and its impact on precipitation phenomena during coil cooling for plain c...The coil cooling and its role in a hot strip mill were reviewed. A mathematical model was developed to describe and analyze the thermal history and its impact on precipitation phenomena during coil cooling for plain carbon, HSLA-V and HSLA-Nb steels. The predicted result of the thermal model was compared with that measured from industrial coil. The effect of cooling condition and coil dimension on the thermal history and final mechanical properties of the steel strip was examined. The coiling temperature and cooling rate have crucial influence on the precipitation strengthening.展开更多
In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electro...In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.展开更多
文摘The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.
文摘Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.
文摘A new type of hot-rolled transformation induced plasticity (TRIP) steel with 2.3%AI was developed to replace conventional Si-bearing TRIP steel to improve surface quality of the steel sheet. The relationship between retained austenite volume fraction and hot-rolling processing was researched by Gleeble-2000 thermo-dynamic test for the Al-bearing steel. The experimental result showed that aluminum played an important role on retaining austenite and the volume fraction increased from 4.4% to 7.5% as coiling temperature increased from 350℃ to 450℃, while coiling temperature had a stronger effect on retaining austenite than finishing rolling temoerature.
基金The auLhors thank for the financial aid from Scienceamend of Shandong Province (No. Q98F05146)
文摘In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or region. In this paper, properties, microstructures and precipitate morphology of hot-rolled iF steel sheets are described..
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
文摘In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a cooling experimental instrument in the end. The experiments show that high initial coolingtemperature, discontinuous cooling style, and long cooling time can improve mechanical property of cooling coilsand shorten cooling time. The CC coils experiments cover the different steel grades, so that CC process effects onhot-rolled coils may be predicted and controlled actively.
文摘The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.
文摘Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.
文摘The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.
文摘The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.
文摘In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.
基金supported by the Key Research Foundation of Baoshan Iron & Steel Co.,Ltd.(No.D06EBEA207)
文摘Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2001AA339030),the National Natural Science Foundation of China (No.50334010) and the Ministry of Sciences and Technology of China.
文摘The thermal evolution of steel coil during cooling was simulated and investigated by the use of in-house Q-CSP software. The dependence of the thermal evolution of steel coil on cooling methods, temperature distribution of the strip before coiling, coil size and steel grades was also discussed. The study plays a significant role in helping steel makers to better understand and control the cooling process.
基金Funded by the National Natural Science Foundation of China(No.51501056)Natural Science Foundation of Hebei Province(No.E2016209341)+2 种基金Educational Commission of Hebei Province(No.BJ2014031)Project of Science and Technology of Tangshan(Nos.14130243B and 15130202C)Foundation of North China University of Science and Technology(No.JP201510)
文摘The effects of hot-strip coiling temperature on Ti(C,N) precipitation, texture and hydrogen permeation behavior in DC06 EK enamel steel were investigated by TEM, EBSD test and electrochemical hydrogen permeation experiment. It was found that the Ti(C,N) particles in hot-strip coarsened with increasing coiling temperature, whereas after cold-rolling and annealing, the size difference of Ti(C,N) particles was lessened. The hot-strip coiling temperature has a significant impact on the recrystallized texture in the subsequent cold-rolled and annealed sheet. Hot-strip using high temperature(700 ℃) coiling leads to strong {111} recrystallized texture in annealed sheet, with peak intensity 9.2. On the contrary, in annealed sheets using hot-strip coiling at 650 ℃, their {111} recrystallized textures were weaker, which was also reflected in their rmvalues. Even though the hydrogen diffusion coefficient is slightly lower(7.76×10^(-5) mm^2/s) in annealed sheet using low temperature coiling(600 ℃), appropriately higher coiling temperature is more suitable for DC06 EK enamel steel combining both good drawability and fish-scale resistance.
基金National Natural Science Foundation of China for financial support, under Grant No. 50104004.
文摘The effect of coiling temperatures on the evolution of texture in Ti-IF steel during ferritic hot rolling, cold rolling and annealing was studied. It was found that texture evolution at high temperature coiling is absolutely different from that at low temperature one. The hot band texture includes a strong α-fiber as well as a weak γ-fiber after ferritic hot rolling and low temperature coiling. Both of them intensify after cold rolling and a γ-fiber with peak at {111}〈112〉 is the main texture of annealed samples. However, the main component of the hot band texture after high temperature coiling is v-fiber. After cold rolling, the intensity of γ texture reduces; α fiber (except {111}〈110〉 component) intensifies and a strong and well-proportioned γ-fiber forms in the annealed samples.
文摘The sensitivity of magnetic Barkhausen noise (MBN) profile to changes in the excitation field strength and the number of turns of the detection coil was investigated in inhomogeneous material. Generally, the 0.5 mm case depth EN 36 steel specimen shows a double peak profile indicative of inhomogeneity through the detected depth the magnetized landscape. Various excitation field amplitudes were applied to the specimen and the induced MBN emission was analyzed for each magnetizing current. Excitation field at the lowest level induced an MBN emission of two peaks of equivalent heights. The first peak occurs at lower field than the second peak in the magnetization period. As the excitation field increased, the height of both peaks increased but the second peak increased in a higher rate than that of the first peak. Beyond certain excitation level, both peaks began to saturate and no increase in the MBN intensity was observed with increased excitation field strength. However, peak position and the number of Barkhausen events, indicated linearly as a function of the applied field strength. The experiment also establishes that the number of turns in the detection coil is important parameter which controls the height of the first peak. Low field peak height increases as the number of turn of the detection coil increases. The results indicate that the potential difference applied to the electromagnet and the sensitivity of the detection coil, determine the MBN profile characteristics.
文摘The effects of cooling rate and coiling temperature on microstructure and mechanical properties of a plain carbon steel were investigated by combining metallography and tensile experiments. The results indicate that ferrite grain size is refined and bainite transformation occurs to ensure high strength and elongation, as the cooling rate is quick enough. Yield strength and tensite strength improve with the decreased finish cooling temperature, but the elongation decreases too significantly to meet the requirements. Thus, the cooling rate must be quick enough, and the appropriate coiling temperature should be carefully selected to obtain refined ferrite and a small amount of bainite to improve the strength while the plasticity is also ensured. Under this condition, the Mn element concentration can be reduced to save cost or produce higher strength steel with same chemical composition.
文摘Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.
文摘The coil cooling and its role in a hot strip mill were reviewed. A mathematical model was developed to describe and analyze the thermal history and its impact on precipitation phenomena during coil cooling for plain carbon, HSLA-V and HSLA-Nb steels. The predicted result of the thermal model was compared with that measured from industrial coil. The effect of cooling condition and coil dimension on the thermal history and final mechanical properties of the steel strip was examined. The coiling temperature and cooling rate have crucial influence on the precipitation strengthening.
文摘In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.