[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to p...[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to process TM/ETM+ image based on field work and investigation of Hotan Oasis. These interpretation dates have been reclassified to desert and oasis. Then, the driving mechanism of desertification and oasification was analyzed. [Result] The analysis indicated that the oasification velocity(91.24 km^2/year) was faster than the desertification’s(77.78 km^2/year),with a rapid growth of 5.59 km^2/year in oasis area in the mid-lower reaches of the Hotan River. [Coclusion] There existed spatial coupling linked by water consumption between oasification in the middle reaches and desertification in the lower reaches.And the changing trends were opposite not only for the oasis area, but also for the oasification area and oasification velocity between the middle and the lower reaches of the Hotan River Basin. With climatic warming, population growth, economical development, scientific and technological progress, and in particular the implementation of national policies, the cropland area increased and oasis expanded, speeding up the oasification and water consumption in the middle reaches. Hence it is urgent to prevent the Hotan Oasis from exacerbating the current water supply-demand imbalance and prohibit the expansion of arable land to transitional belt between oasis and desert.展开更多
Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the b...Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the biological geomorphologic features and growth process of Tamarix nabkhas in the middle and lower reaches of the Hotan River, Xinjiang. And the results indicate that the ecological type of Tamarix in the study area is a kind of Tugaic soil habitat based on the deep soil of the Populus Diversifolia forests and shrubs. This type of habitat can be divided into three kinds of sub-habitats which demonstrate the features of ecological environment of Tamarix nabkhas during the differential developed phases. Meanwhile, the Tamar, ix nabkha can exert intensified disturbance current on wind-sand flow on the ground,and its root and stems not only have strong potential of sprouting but are characteristic of wind erosion-tolerance, resistance to be buried by sand and respectively tough rigid of the lignified branches, for it has a rather longer life-time. Thus, the wind speed profile influenced by the Tamarix nabkha is different from the Phragmites nabkha and Alhagi nabkha. And the structure of the wind flow is beneficial to aeolian sand accumulating in/around Tamarix shrub, which can create unique Tamarix nabkhas with higher average gradient and longer periodicity of life. Tamarix nabkha evolution in the area experienced three stages: growth stage, mature and steady stage and withering stage. In each stage, morphological features and geomorphic process of Tamarix nabkha are different due to the discrep- ant interaction between the nabkha and aeolian sand flow.展开更多
基金Supported by the National Basic Research Program of China(973 Program,2010CB955905)the Fund of Chengde Municipal Finance Bureau(CZ2013004)~~
文摘[Objective] The main purpose is to reveal the laws and driving mechanism of oasification and desertification in Hotan River Basin during the period of 1972-2010. [Method] The visual interpretation method was used to process TM/ETM+ image based on field work and investigation of Hotan Oasis. These interpretation dates have been reclassified to desert and oasis. Then, the driving mechanism of desertification and oasification was analyzed. [Result] The analysis indicated that the oasification velocity(91.24 km^2/year) was faster than the desertification’s(77.78 km^2/year),with a rapid growth of 5.59 km^2/year in oasis area in the mid-lower reaches of the Hotan River. [Coclusion] There existed spatial coupling linked by water consumption between oasification in the middle reaches and desertification in the lower reaches.And the changing trends were opposite not only for the oasis area, but also for the oasification area and oasification velocity between the middle and the lower reaches of the Hotan River Basin. With climatic warming, population growth, economical development, scientific and technological progress, and in particular the implementation of national policies, the cropland area increased and oasis expanded, speeding up the oasification and water consumption in the middle reaches. Hence it is urgent to prevent the Hotan Oasis from exacerbating the current water supply-demand imbalance and prohibit the expansion of arable land to transitional belt between oasis and desert.
基金National Natural Science Foundation of China, No.40461002 The Key Project of the Ministry of Education, N0.205184
文摘Tamarix nabkha is one of the most widespread nabkhas, distributing in the arid region of China. Based on the observations outdoors and the simulation experiments in laboratories, analysis in this paper refers to the biological geomorphologic features and growth process of Tamarix nabkhas in the middle and lower reaches of the Hotan River, Xinjiang. And the results indicate that the ecological type of Tamarix in the study area is a kind of Tugaic soil habitat based on the deep soil of the Populus Diversifolia forests and shrubs. This type of habitat can be divided into three kinds of sub-habitats which demonstrate the features of ecological environment of Tamarix nabkhas during the differential developed phases. Meanwhile, the Tamar, ix nabkha can exert intensified disturbance current on wind-sand flow on the ground,and its root and stems not only have strong potential of sprouting but are characteristic of wind erosion-tolerance, resistance to be buried by sand and respectively tough rigid of the lignified branches, for it has a rather longer life-time. Thus, the wind speed profile influenced by the Tamarix nabkha is different from the Phragmites nabkha and Alhagi nabkha. And the structure of the wind flow is beneficial to aeolian sand accumulating in/around Tamarix shrub, which can create unique Tamarix nabkhas with higher average gradient and longer periodicity of life. Tamarix nabkha evolution in the area experienced three stages: growth stage, mature and steady stage and withering stage. In each stage, morphological features and geomorphic process of Tamarix nabkha are different due to the discrep- ant interaction between the nabkha and aeolian sand flow.