The weather in Nagano Prefecture, Japan, can be roughly classified into four types according to principal component analysis and k-means clustering. We predicted the extreme values of the maximum daily and hourly prec...The weather in Nagano Prefecture, Japan, can be roughly classified into four types according to principal component analysis and k-means clustering. We predicted the extreme values of the maximum daily and hourly precipitation in Nagano Prefecture using the extreme value theory. For the maximum daily precipitation, the vales of ξ in Matsumoto, Karuizawa, Sugadaira, and Saku were positive;therefore, it has no upper bound and tends to take large values. Therefore, it is dangerous and caution is required. The values of ξ in Nagano, Kisofukushima, and Minamishinano were determined to be zero, therefore, there was no upper limit, the probability of obtaining a large value was low, and caution was required. We predicted the maximum return levels for return periods of 10, 20, 50, and 100 years along with respective 95% confidence intervals in Nagano, Matsumoto, Karuizawa, Sugadaira, Saku, Kisofukushima, and Minamishinano. In Matsumoto, the 100-year return level was 182 mm, with a 95% CI [129, 236]. In Minamishinano, the 100-year return level was 285 mm, with a 95% CI [173, 398]. The 100-year return levels for the maximum daily rainfall were 285, 271, and 271 mm in Minamishinano, Saku, and Karuizawa, respectively, where the changes in the daily maximum rainfall were larger than those at other points. Because these values are large, caution is required during heavy rainfall. The 100-year return levels for the maximum daily and hourly precipitation were similar in Karuizawa and Saku. In Sugadaira, the 100-year return level for a maximum hourly rainfall of 107.2 mm was larger than the maximum daily rainfall. Hence, it is necessary to be careful about short-term rainfall events.展开更多
Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rai...Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.展开更多
Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably chal...Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study,we proposed a novel method to produce high-quality,high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging(ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation(PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multisatellite Measurement(IMERG) product with observations from 1065 meteorological stations in the warm season(May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG.According to a cross-validation with gauged observations, the correlation coefficient(CC),probability of detection(POD) and critical success index(CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error(RMSE), mean error(ME) and false alarm ratio(FAR)decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.展开更多
This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequen...This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequency,intensity,duration,and diurnal cycle are examined through zoning evaluation.The results show that the China Meteor-ological Administration Guangdong Rapid Update Assimilation Numerical Forecast System(CMA-GD)tends to forecast a higher occurrence of light precipitation.It underestimates the late afternoon precipitation and the occurrence of short-duration events.The China Meteorological Administration Shanghai Numerical Forecast Model System(CMA-SH9)reproduces excessive precipitation at a higher frequency and intensity throughout the island.It overestimates rainfall during the late afternoon and midnight periods.The simulated most frequent peak times of rainfall in CMA-SH9 are 0-1 hour deviations from the observed data.The China Meteorological Administration Mesoscale Weather Numerical Forecasting System(CMA-MESO)displays a similar pattern to rainfall observations but fails to replicate reasonable structure and diurnal variation of frequency-intensity.It underestimates the occurrence of long-duration events and overestimates related rainfall amounts from midnight to early morning.Notably,significant discrepancies are observed in the predictions of the three models for areas with complex terrain,such as the central,southeastern,and southwestern regions of Hainan Island.展开更多
Statistical methods for category(yes/no) forecasts, such as the Threat Score, are typically used in the verification of precipitation forecasts. However, these standard methods are affected by the so-called "double...Statistical methods for category(yes/no) forecasts, such as the Threat Score, are typically used in the verification of precipitation forecasts. However, these standard methods are affected by the so-called "double-penalty" problem caused by slight displacements in either space or time with respect to the observations. Spatial techniques have recently been developed to help solve this problem. The fractions skill score(FSS), a neighborhood spatial verification method, directly compares the fractional coverage of events in windows surrounding the observations and forecasts.We applied the FSS to hourly precipitation verification by taking hourly forecast products from the GRAPES(Global/Regional Assimilation Prediction System) regional model and quantitative precipitation estimation products from the National Meteorological Information Center of China during July and August 2016, and investigated the difference between these results and those obtained with the traditional category score. We found that the model spin-up period affected the assessment of stability. Systematic errors had an insignificant role in the fraction Brier score and could be ignored. The dispersion of observations followed a diurnal cycle and the standard deviation of the forecast had a similar pattern to the reference maximum of the fraction Brier score. The coefficient of the forecasts and the observations is similar to the FSS; that is, the FSS may be a useful index that can be used to indicate correlation.Compared with the traditional skill score, the FSS has obvious advantages in distinguishing differences in precipitation time series, especially in the assessment of heavy rainfall.展开更多
Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatia...Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that: (1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic. (2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas. Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition, the diurnal variation of rainfall intensity also shows distinctive urban-rural differences, especially during late afternoon and early nighttime in the city area. (3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation. This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.展开更多
The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolu...The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolutions.The outputs of the high-and low-resolution versions of CAS FGOALS-f3-H and CAS FGOALS-f3-L for the experiments of the HighResMIP simulations in CMIP6 are described in this paper.The models and their configurations,experimental settings,and postprocessing methods are all introduced.CAS FGOALS-f3-H,with a 0.25°horizontal resolution,and CAS FGOALS-f3-L,with a 1°horizontal resolution,were forced by the standard external conditions,and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of‘highresSST-present’and‘highresSST-future’,respectively.The model outputs contain multiple time scales including the required hourly mean,three-hourly mean,six-hourly transient,daily mean,and monthly mean datasets.It is reported that the 0.25°CAS FGOALS-f3-H successfully simulates some of the key challenges in climate modeling,including the average lifetime of tropical cyclones,particularly in the western parts of the northern Pacific Ocean,and the diurnal cycle of hourly precipitation.These datasets will contribute to the benchmarking of current models for CMIP,and studies of the impacts of horizontal resolutions on climate modeling issues.展开更多
[Objective] The research aimed to analyze the rainstorm characteristics in Hanbin District of Ankang City in 43 years. [Method] By using the daily and hourly precipitation data in Hanbin District of Ankang City during...[Objective] The research aimed to analyze the rainstorm characteristics in Hanbin District of Ankang City in 43 years. [Method] By using the daily and hourly precipitation data in Hanbin District of Ankang City during 1961-2003, the occurrence rule and variation characteristics of rainstorm weather in 43 years in the zone were analyzed. [Result] The distribution of rainstorm days in Hanbin District of Ankang City had the obvious season characteristic. The earliest rainstorm days occurred in May and started to increase in June. It frequently happened in July, August and gradually decreased in September. The latest rainstorm finished in the middle ten-day of October. The storm rainfall and days in Hanbin District of Ankang City during 1961-2003 both presented the obvious linear increase trend. From the 1970s to the end of 1980s, it was the period when the storm rainfall was more. The rainstorm days during the 1960s-early 1970s and early 1990s were fewer. The rainstorm days were more from the metaphase of 1970s to late 1980s and after the metaphase of 1990s. The time distribution characteristic of hourly precipitation in the rainstorm days was obvious and based mainly on the single peak type. The time mainly concentrated in the daytime, and the short-time strong precipitation was more. [Conclusion] The research provided the reference basis for accurately forecasting the rainstorm occurrence, disaster prevention and reduction work.展开更多
Northeast China(NEC)is one of the vital commercial grain bases in China and it has suffered from soil erosion due to prolonged cultivation and lack of protection.To determine long-term trends of precipi-tation and rai...Northeast China(NEC)is one of the vital commercial grain bases in China and it has suffered from soil erosion due to prolonged cultivation and lack of protection.To determine long-term trends of precipi-tation and rainfall erosivity over NEC during the latest decades,daily precipitation for the entire year during 1961-2020 and hourly precipitation for the warm season(May to September)during 1971-2020 were collected for 192 and 126 stations,respectively.Three seasons,including the cold season(October to April),early warm season(May to June),and late warm season(July to September)were divided according to the combination of precipitation and vegetation.Results demonstrate:(1)Daily precipita-tion reveals total precipitation and rainfall erosivity in the cold season and early warm season increase significantly at relative rates of 3.1%-6.1%compared with the average during 1961-2020,and those in the late warm season decrease insignificantly.(2)Hourly precipitation reveals storms occurring in the early and late warm seasons have undergone significant increasing changes,which shift towards longer storm duration,larger amount,peak intensity,kinetic energy,and rainfall erosivity during 1971-2020.Moreover,the frequency of extreme storms increased.(3)Rainfall erosivities estimated from daily pre-cipitation during 1971-2020 increase insignificantly for the early and late warm season,whereas those from hourly precipitation increase significantly(6.1%and 5.5%,respectively),which indicates daily precipitation may not be able to capture the trend fully under the warming background,and precipi-tation at higher resolutions than the daily scale is necessary to detect trends of rainfall erosivity more accurately.展开更多
In this study, we investigate the climate attribution of the 21·7 Henan extreme precipitation event. A conditional storyline attribution method is used, based on simulations of the event with a small-domain high-...In this study, we investigate the climate attribution of the 21·7 Henan extreme precipitation event. A conditional storyline attribution method is used, based on simulations of the event with a small-domain high-resolution cloud-resolving model. Large-scale vertical motion is determined by an interactive representation of large-scale dynamics based on the quasigeostrophic omega equation, with dynamical forcing terms taken from observation-based reanalysis data. It is found that warming may lead to significant intensification of both regional-scale(10–14% K, depending on convective organization) and station-scale precipitation extremes(7–9% K^(-1)). By comparing clustered convection organized by a localized surface temperature anomaly and squall-line convection organized by vertical wind shear, we further explored how convective organization may modify precipitation extremes and their responses to warming. It is found that shear convective organization is much more sensitive to large-scale dynamic forcing and results in much higher precipitation extremes at both regional and station scales than unorganized convection is. The clustered convection increases station-scale precipitation only slightly during heavy precipitation events. For regional-scale extreme precipitation sensitivity, shear-organized convection has a larger sensitivity by 2–3% Kthan that of unorganized convection, over a wide temperature range, due to its stronger diabatic heating feedback. For the station-scale extreme precipitation sensitivity, no systemic dependence on convective organization is found in our simulations.展开更多
文摘The weather in Nagano Prefecture, Japan, can be roughly classified into four types according to principal component analysis and k-means clustering. We predicted the extreme values of the maximum daily and hourly precipitation in Nagano Prefecture using the extreme value theory. For the maximum daily precipitation, the vales of ξ in Matsumoto, Karuizawa, Sugadaira, and Saku were positive;therefore, it has no upper bound and tends to take large values. Therefore, it is dangerous and caution is required. The values of ξ in Nagano, Kisofukushima, and Minamishinano were determined to be zero, therefore, there was no upper limit, the probability of obtaining a large value was low, and caution was required. We predicted the maximum return levels for return periods of 10, 20, 50, and 100 years along with respective 95% confidence intervals in Nagano, Matsumoto, Karuizawa, Sugadaira, Saku, Kisofukushima, and Minamishinano. In Matsumoto, the 100-year return level was 182 mm, with a 95% CI [129, 236]. In Minamishinano, the 100-year return level was 285 mm, with a 95% CI [173, 398]. The 100-year return levels for the maximum daily rainfall were 285, 271, and 271 mm in Minamishinano, Saku, and Karuizawa, respectively, where the changes in the daily maximum rainfall were larger than those at other points. Because these values are large, caution is required during heavy rainfall. The 100-year return levels for the maximum daily and hourly precipitation were similar in Karuizawa and Saku. In Sugadaira, the 100-year return level for a maximum hourly rainfall of 107.2 mm was larger than the maximum daily rainfall. Hence, it is necessary to be careful about short-term rainfall events.
基金supported by the R & D Special Fund for Public Welfare Industry (meteorology)(GYHY201106018)National Key Program for Developing Basic Sciences (Grant No. 2006CB400503)
文摘Based on hourly precipitation data in eastern China in the warm season during 1961-2000,spatial distributions of frequency for 20 mm h 1 and 50 mm h 1 precipitation were analyzed,and the criteria of short-duration rainfall events and severe rainfall events are discussed.Furthermore,the percentile method was used to define local hourly extreme precipitation;based on this,diurnal variations and trends in extreme precipitation were further studied.The results of this study show that,over Yunnan,South China,North China,and Northeast China,the most frequent extreme precipitation events occur most frequently in late afternoon and/or early evening.In the Guizhou Plateau and the Sichuan Basin,the maximum frequency of extreme precipitation events occurs in the late night and/or early morning.And in the western Sichuan Plateau,the maximum frequency occurs in the middle of the night.The frequency of extreme precipitation (based on hourly rainfall measurements) has increased in most parts of eastern China,especially in Northeast China and the middle and lower reaches of the Yangtze River,but precipitation has decreased significantly in North China in the past 50 years.In addition,stations in the Guizhou Plateau and the middle and lower reaches of the Yangtze River exhibit significant increasing trends in hourly precipitation extremes during the nighttime more than during the daytime.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2020D01A137)the National Natural Science Foundation of China(41901363,42071075)+2 种基金Tianshan Youth Project of Xinjiang Uigur Autonomous Region Outstanding young talents(2019Q039)National Key R&D Program of China(2019YFC1510503)the Basic Research Operating Expenses of the Central Level Non-profit Research Institutes(IDM2020006)。
文摘Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study,we proposed a novel method to produce high-quality,high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging(ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation(PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multisatellite Measurement(IMERG) product with observations from 1065 meteorological stations in the warm season(May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG.According to a cross-validation with gauged observations, the correlation coefficient(CC),probability of detection(POD) and critical success index(CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error(RMSE), mean error(ME) and false alarm ratio(FAR)decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.
基金Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(U21A6001)China Meteorological Administration Innovation and Develop-ment Project(CXFZ2021Z008)Hainan Provincial Meteorolo-gical Bureau Business Improvement Project(hnqxSJ202101)。
文摘This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequency,intensity,duration,and diurnal cycle are examined through zoning evaluation.The results show that the China Meteor-ological Administration Guangdong Rapid Update Assimilation Numerical Forecast System(CMA-GD)tends to forecast a higher occurrence of light precipitation.It underestimates the late afternoon precipitation and the occurrence of short-duration events.The China Meteorological Administration Shanghai Numerical Forecast Model System(CMA-SH9)reproduces excessive precipitation at a higher frequency and intensity throughout the island.It overestimates rainfall during the late afternoon and midnight periods.The simulated most frequent peak times of rainfall in CMA-SH9 are 0-1 hour deviations from the observed data.The China Meteorological Administration Mesoscale Weather Numerical Forecasting System(CMA-MESO)displays a similar pattern to rainfall observations but fails to replicate reasonable structure and diurnal variation of frequency-intensity.It underestimates the occurrence of long-duration events and overestimates related rainfall amounts from midnight to early morning.Notably,significant discrepancies are observed in the predictions of the three models for areas with complex terrain,such as the central,southeastern,and southwestern regions of Hainan Island.
基金Supported by the National Key Research and Development Program(2017YFA0604500)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506002)+1 种基金China Meteorological Administration Special Project for Forecasters(YBGJXM(2017)06)National Natural Science Foundation of China(41305091)
文摘Statistical methods for category(yes/no) forecasts, such as the Threat Score, are typically used in the verification of precipitation forecasts. However, these standard methods are affected by the so-called "double-penalty" problem caused by slight displacements in either space or time with respect to the observations. Spatial techniques have recently been developed to help solve this problem. The fractions skill score(FSS), a neighborhood spatial verification method, directly compares the fractional coverage of events in windows surrounding the observations and forecasts.We applied the FSS to hourly precipitation verification by taking hourly forecast products from the GRAPES(Global/Regional Assimilation Prediction System) regional model and quantitative precipitation estimation products from the National Meteorological Information Center of China during July and August 2016, and investigated the difference between these results and those obtained with the traditional category score. We found that the model spin-up period affected the assessment of stability. Systematic errors had an insignificant role in the fraction Brier score and could be ignored. The dispersion of observations followed a diurnal cycle and the standard deviation of the forecast had a similar pattern to the reference maximum of the fraction Brier score. The coefficient of the forecasts and the observations is similar to the FSS; that is, the FSS may be a useful index that can be used to indicate correlation.Compared with the traditional skill score, the FSS has obvious advantages in distinguishing differences in precipitation time series, especially in the assessment of heavy rainfall.
基金jointly supported by the Major Consulting Projects of the Chinese Academy of Engineering(“Study on Strategies and Measures for the Prevention and Control of Urban Flood and Waterlogging Disasters in China”)the Public Welfare Industry(Meteorological)Research Projects(Grant Nos.GYHY201306065,GYHY201406001)a research project of the Shanghai Meteorological Bureau(Grant No.YJ201604)
文摘Using the hourly precipitation records of meteorological stations in Shanghai, covering a period of almost a century (1916-2014), the long-term variation of extreme heavy precipitation in Shanghai on multiple spatial and temporal scales is analyzed, and the effects of urbanization on hourly rainstorms studied. Results show that: (1) Over the last century, extreme hourly precipitation events enhanced significantly. During the recent urbanization period from 1981 to 2014, the frequency of heavy precipitation increased significantly, with a distinct localized and abrupt characteristic. (2) The spatial distribution of long-term trends for the occurrence frequency and total precipitation intensity of hourly heavy precipitation in Shanghai shows a distinct urban rain-island feature; namely, heavy precipitation was increasingly focused in urban and suburban areas. Attribution analysis shows that urbanization in Shanghai contributed greatly to the increase in both frequency and intensity of heavy rainfall events in the city, thus leading to an increasing total precipitation amount of heavy rainfall events. In addition, the diurnal variation of rainfall intensity also shows distinctive urban-rural differences, especially during late afternoon and early nighttime in the city area. (3) Regional warming, with subsequent enhancement of water vapor content, convergence of moisture flux and atmospheric instability, provided favorable physical backgrounds for the formation of extreme precipitation. This accounts for the consistent increase in hourly heavy precipitation over the whole Shanghai area during recent times.
基金jointly funded by the Strategic Priority Research Program of Chinese Academy of Sciences grant number XDB40030205the National Natural Science Foundation of China grant numbers 91737306,41675100,and U1811464。
文摘The High Resolution Model Intercomparison Project(HighResMIP)is a unique model intercomparison project in phase 6 of the Coupled Model Intercomparison Project(CMIP6),which is focused on the impact of horizontal resolutions.The outputs of the high-and low-resolution versions of CAS FGOALS-f3-H and CAS FGOALS-f3-L for the experiments of the HighResMIP simulations in CMIP6 are described in this paper.The models and their configurations,experimental settings,and postprocessing methods are all introduced.CAS FGOALS-f3-H,with a 0.25°horizontal resolution,and CAS FGOALS-f3-L,with a 1°horizontal resolution,were forced by the standard external conditions,and two coordinated sets of simulations were conducted for 1950–2014 and 2015–50 with the Experiment IDs of‘highresSST-present’and‘highresSST-future’,respectively.The model outputs contain multiple time scales including the required hourly mean,three-hourly mean,six-hourly transient,daily mean,and monthly mean datasets.It is reported that the 0.25°CAS FGOALS-f3-H successfully simulates some of the key challenges in climate modeling,including the average lifetime of tropical cyclones,particularly in the western parts of the northern Pacific Ocean,and the diurnal cycle of hourly precipitation.These datasets will contribute to the benchmarking of current models for CMIP,and studies of the impacts of horizontal resolutions on climate modeling issues.
基金Supported by Department of Science and Technology Industry SpecificItem (GYHY200806021-02)
文摘[Objective] The research aimed to analyze the rainstorm characteristics in Hanbin District of Ankang City in 43 years. [Method] By using the daily and hourly precipitation data in Hanbin District of Ankang City during 1961-2003, the occurrence rule and variation characteristics of rainstorm weather in 43 years in the zone were analyzed. [Result] The distribution of rainstorm days in Hanbin District of Ankang City had the obvious season characteristic. The earliest rainstorm days occurred in May and started to increase in June. It frequently happened in July, August and gradually decreased in September. The latest rainstorm finished in the middle ten-day of October. The storm rainfall and days in Hanbin District of Ankang City during 1961-2003 both presented the obvious linear increase trend. From the 1970s to the end of 1980s, it was the period when the storm rainfall was more. The rainstorm days during the 1960s-early 1970s and early 1990s were fewer. The rainstorm days were more from the metaphase of 1970s to late 1980s and after the metaphase of 1990s. The time distribution characteristic of hourly precipitation in the rainstorm days was obvious and based mainly on the single peak type. The time mainly concentrated in the daytime, and the short-time strong precipitation was more. [Conclusion] The research provided the reference basis for accurately forecasting the rainstorm occurrence, disaster prevention and reduction work.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2021YFE0113800)the National Key Research and Development Program of China(Grant No.2021YFD1500705)the Project for Recruited Talents to Start Up Their Work and Research in Beijing Normal University at Zhuhai(310432116).
文摘Northeast China(NEC)is one of the vital commercial grain bases in China and it has suffered from soil erosion due to prolonged cultivation and lack of protection.To determine long-term trends of precipi-tation and rainfall erosivity over NEC during the latest decades,daily precipitation for the entire year during 1961-2020 and hourly precipitation for the warm season(May to September)during 1971-2020 were collected for 192 and 126 stations,respectively.Three seasons,including the cold season(October to April),early warm season(May to June),and late warm season(July to September)were divided according to the combination of precipitation and vegetation.Results demonstrate:(1)Daily precipita-tion reveals total precipitation and rainfall erosivity in the cold season and early warm season increase significantly at relative rates of 3.1%-6.1%compared with the average during 1961-2020,and those in the late warm season decrease insignificantly.(2)Hourly precipitation reveals storms occurring in the early and late warm seasons have undergone significant increasing changes,which shift towards longer storm duration,larger amount,peak intensity,kinetic energy,and rainfall erosivity during 1971-2020.Moreover,the frequency of extreme storms increased.(3)Rainfall erosivities estimated from daily pre-cipitation during 1971-2020 increase insignificantly for the early and late warm season,whereas those from hourly precipitation increase significantly(6.1%and 5.5%,respectively),which indicates daily precipitation may not be able to capture the trend fully under the warming background,and precipi-tation at higher resolutions than the daily scale is necessary to detect trends of rainfall erosivity more accurately.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42075146 & 41875050)the support from U.S. National Science Foundation (Grant No. AGS-1933523)。
文摘In this study, we investigate the climate attribution of the 21·7 Henan extreme precipitation event. A conditional storyline attribution method is used, based on simulations of the event with a small-domain high-resolution cloud-resolving model. Large-scale vertical motion is determined by an interactive representation of large-scale dynamics based on the quasigeostrophic omega equation, with dynamical forcing terms taken from observation-based reanalysis data. It is found that warming may lead to significant intensification of both regional-scale(10–14% K, depending on convective organization) and station-scale precipitation extremes(7–9% K^(-1)). By comparing clustered convection organized by a localized surface temperature anomaly and squall-line convection organized by vertical wind shear, we further explored how convective organization may modify precipitation extremes and their responses to warming. It is found that shear convective organization is much more sensitive to large-scale dynamic forcing and results in much higher precipitation extremes at both regional and station scales than unorganized convection is. The clustered convection increases station-scale precipitation only slightly during heavy precipitation events. For regional-scale extreme precipitation sensitivity, shear-organized convection has a larger sensitivity by 2–3% Kthan that of unorganized convection, over a wide temperature range, due to its stronger diabatic heating feedback. For the station-scale extreme precipitation sensitivity, no systemic dependence on convective organization is found in our simulations.