g3(green gas for gird)环保气体(C_(4)F_(7)N/CO_(2)混合)作为SF_(6)最具潜力的新型环保绝缘替代气体,近几年来受到了广泛关注.通过分析g3气体绝缘组合开关设备中的分解组分来检测局部放电、过热等缺陷故障,对于电力设备运行状态的评...g3(green gas for gird)环保气体(C_(4)F_(7)N/CO_(2)混合)作为SF_(6)最具潜力的新型环保绝缘替代气体,近几年来受到了广泛关注.通过分析g3气体绝缘组合开关设备中的分解组分来检测局部放电、过热等缺陷故障,对于电力设备运行状态的评估和诊断具有重要作用.本文提出利用Si原子掺杂改性来提高MoS_(2)的气敏和吸附性能,并基于密度泛函理论(DFT)的计算方法,通过吸附能、电荷转移、态密度和局部态密度等参数指标,探究了本征MoS_(2)、Si改性MoS_(2)(Si-MoS_(2))对g3气体典型分解组分—COF_(2)、CF_(4)、CF_(3)CN的吸附气敏机理.分析表明Si原子在MoS_(2)表面具有稳定的掺杂结构,相比本征MoS_(2),Si原子改性之后的MoS_(2)的导电性得到了有效增强;Si-MoS_(2)对COF_(2)、CF_(4)气体表现出强化学吸附作用,对CF_(3)CN为弱物理吸附,吸附强度CF_(4)>COF_(2)>CF_(3)CN,且在吸附过程中Si-MoS_(2)总是作为电子供体,将电子转移到气体分子;Si改性MoS_(2)对g3气体分解组分具有选择吸附性,为检测CF_(4)、COF_(2)气体的MoS_(2)高性能气敏传感器的研制提供了理论上的基础;研究结果在减少温室气体的排放、提高GIS(Gas Insulated Switchgear)的运行稳定性等方面同样具有重要意义.展开更多
An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivi...An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.展开更多
基金the financial support from the Fundamental Research Program of Shanxi Province,China(No.202203021211130)the National Natural Science Foundation of China(Nos.51801132,52075359)。
文摘g3(green gas for gird)环保气体(C_(4)F_(7)N/CO_(2)混合)作为SF_(6)最具潜力的新型环保绝缘替代气体,近几年来受到了广泛关注.通过分析g3气体绝缘组合开关设备中的分解组分来检测局部放电、过热等缺陷故障,对于电力设备运行状态的评估和诊断具有重要作用.本文提出利用Si原子掺杂改性来提高MoS_(2)的气敏和吸附性能,并基于密度泛函理论(DFT)的计算方法,通过吸附能、电荷转移、态密度和局部态密度等参数指标,探究了本征MoS_(2)、Si改性MoS_(2)(Si-MoS_(2))对g3气体典型分解组分—COF_(2)、CF_(4)、CF_(3)CN的吸附气敏机理.分析表明Si原子在MoS_(2)表面具有稳定的掺杂结构,相比本征MoS_(2),Si原子改性之后的MoS_(2)的导电性得到了有效增强;Si-MoS_(2)对COF_(2)、CF_(4)气体表现出强化学吸附作用,对CF_(3)CN为弱物理吸附,吸附强度CF_(4)>COF_(2)>CF_(3)CN,且在吸附过程中Si-MoS_(2)总是作为电子供体,将电子转移到气体分子;Si改性MoS_(2)对g3气体分解组分具有选择吸附性,为检测CF_(4)、COF_(2)气体的MoS_(2)高性能气敏传感器的研制提供了理论上的基础;研究结果在减少温室气体的排放、提高GIS(Gas Insulated Switchgear)的运行稳定性等方面同样具有重要意义.
基金supported by the National Natural Science Foundation,China (No.52074131)the National Key R&D Project,China (No.2022YFC3900500)+2 种基金the International Technology Cooperation Program of Guangdong Academy of Sciences,China (No.2020GDASYL-20200504001)the Open Competition to Select the Best Candidate of Shangrao,China (No.2021A005)the BL13HB beamline of Shanghai Synchrotron Radiation Facility (SSRF)for providing synchrotron radiation beamtime (Nos.2020-SSRF-PT-011937,2021-SSRF-PT-017645).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12261141662, 12074311, and 12004310)。
文摘An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.