期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于知网的K-means聚类算法 被引量:1
1
作者 冯珺 孙济庆 《情报学报》 CSSCI 北大核心 2007年第3期356-360,共5页
本文通过引入知网的概念,对传统的K-means聚类算法进行了分析,初始聚类中心的选择对聚类结果有较大的影响,初始值选择的不好,可能无法得到有效的聚类结果,这也成为K-means算法的一个主要问题。采用聚类中心的搜索算法来进行聚类中... 本文通过引入知网的概念,对传统的K-means聚类算法进行了分析,初始聚类中心的选择对聚类结果有较大的影响,初始值选择的不好,可能无法得到有效的聚类结果,这也成为K-means算法的一个主要问题。采用聚类中心的搜索算法来进行聚类中心的选取,对其初始聚类中心确定一个初始划分,运用“射靶”的原理进行了改进,找到“靶心”得到一个最终选定的初始聚类中心,从而提高算法的稳定性,得到较稳定的聚类结果。实验结果表明,采用改进后的K-means作为簇心生成算法,随着待聚类文档数目的增加,效率提升更为突出。 展开更多
关键词 知网 聚类 k-mean算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部