Drought across Northwest China in late spring has exerted a vital effect on the local climate and agricultural production,and has been alleviated during the past decades.This study explored the influence of the preced...Drought across Northwest China in late spring has exerted a vital effect on the local climate and agricultural production,and has been alleviated during the past decades.This study explored the influence of the preceding Arctic sea ice on the May drought in Northwest China caused by the precipitation deficit.Further analysis indicated that when the Greenland Sea ice concentration is abnormally high during February to April,the dry conditions in Northwest China tend to be alleviated.The increase of sea ice in the Greenland Sea can excite a meridional circulation,which causes sea surface temperature(SST)anomalies in the North Atlantic via the sea-air interaction,manifested as significant warm SST anomalies over the south of Greenland and the subtropical North Atlantic,but negative SST anomalies over the west of the Azores.This abnormal SST pattern maintains to May and triggers a zonal wave train from the North Atlantic through Scandinavia and Central Asia to Northwest China,leading to abnormal cyclones in Northwest China.Consequently,Northwest China experiences a more humid climate than usual.展开更多
Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub...Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.展开更多
Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using dail...Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.展开更多
In the context of changes in global climate and land uses,biodiversity patterns and plant species distributions have been significantly affected.Soil salinization is a growing problem,particularly in the arid areas of...In the context of changes in global climate and land uses,biodiversity patterns and plant species distributions have been significantly affected.Soil salinization is a growing problem,particularly in the arid areas of Northwest China.Halophytes are ideal for restoring soil salinization because of their adaptability to salt stress.In this study,we collected the current and future bioclimatic data released by the WorldClim database,along with soil data from the Harmonized World Soil Database(v1.2)and A Big Earth Data Platform for Three Poles.Using the maximum entropy(MaxEnt)model,the potential suitable habitats of six halophytic plant species(Halostachys caspica(Bieb.)C.A.Mey.,Halogeton glomeratus(Bieb.)C.A.Mey.,Kalidium foliatum(Pall.)Moq.,Halocnemum strobilaceum(Pall.)Bieb.,Salicornia europaea L.,and Suaeda salsa(L.)Pall.)were assessed under the current climate conditions(average for 1970-2000)and future(2050s,2070s,and 2090s)climate scenarios(SSP245 and SSP585,where SSP is the Shared Socio-economic Pathway).The results revealed that all six halophytic plant species exhibited the area under the receiver operating characteristic curve values higher than 0.80 based on the MaxEnt model,indicating the excellent performance of the MaxEnt model.The suitability of the six halophytic plant species significantly varied across regions in the arid areas of Northwest China.Under different future climate change scenarios,the suitable habitat areas for the six halophytic plant species are expected to increase or decrease to varying degrees.As global warming progresses,the suitable habitat areas of K.foliatum,S.salsa,and H.strobilaceum exhibited an increasing trend.In contrast,the suitable habitat areas of H.glomeratus,S.europaea,and H.caspica showed an opposite trend.Furthermore,considering the ongoing global warming trend,the centroids of the suitable habitat areas for various halophytic plant species would migrate to different degrees,and four halophytic plant species,namely,S.salsa,H.strobilaceum,H.glomeratus,and H.capsica,would migrate to higher latitudes.Temperature,precipitation,and soil factors affected the possible distribution ranges of these six halophytic plant species.Among them,precipitation seasonality(coefficient of variation),precipitation of the warmest quarter,mean temperature of the warmest quarter,and exchangeable Na+significantly affected the distribution of halophytic plant species.Our findings are critical to comprehending and predicting the impact of climate change on ecosystems.The findings of this study hold significant theoretical and practical implications for the management of soil salinization and for the utilization,protection,and management of halophytes in the arid areas of Northwest China.展开更多
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Through summarizing the research status of emergy analysis at home and abroad,the basic connotation and judgment standard of emergy and indices were introduced in detail. Considering the characteristics of emergy anal...Through summarizing the research status of emergy analysis at home and abroad,the basic connotation and judgment standard of emergy and indices were introduced in detail. Considering the characteristics of emergy analysis applied to the specific geographic scope in arid region in Northwest China,the problems which should be paid attention to and the corresponding suggestions as well as counter measures were put forward. Finally,trends in the further study of emergy analysis were forecasted.展开更多
Due to the uncertainties posed by climate change,resilience has become an increasingly important variable for evaluating regional ecosystem stability.The assessment of Ecological Network Resilience(ENR)is crucial for ...Due to the uncertainties posed by climate change,resilience has become an increasingly important variable for evaluating regional ecosystem stability.The assessment of Ecological Network Resilience(ENR)is crucial for establishing mitigation strategies and sustainable socioeconomic development in arid regions.Shiyang River Basin is an arid watershed in Northwest China with complex characteristics,its ENR and spatial differentiation characteristics in 2020 were investigated in this work based on the Complex Adaptive System(CAS)theory.The results indicated that the mean Ecological Network Resilience Index(ENRI)value for the Shiyang River Basin was 0.390 in 2020,and the mean values in the southern mountainous,middle oasis,and northern desert regions of the basin were 0.598,0.461,and 0.237,respectively,demonstrating evident spatial differences.Additionally,the ENR of the basin exhibited distinct distribution characteristics across different dimension,whereas the trend of the integrated ENR of the basin was consistent with that of elemental,structural,and functional resilience,indicating the constructed three-region ENR model based on the logical relationship of element-structure-function was suitable for evaluation of the ENR in arid inland river watersheds.Furthermore,strategies for enhancing regional ENR were proposed from the perspective of adapting to climate change.展开更多
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie...Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.展开更多
The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oa...The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.展开更多
The fact that several half-grabens and normal faults developed in the Lower--Middle Cambrian of Tazhong (central Tarim Basin) and Bachu areas in Tarim Basin, northwest China, indicates that Tarim Basin was under ext...The fact that several half-grabens and normal faults developed in the Lower--Middle Cambrian of Tazhong (central Tarim Basin) and Bachu areas in Tarim Basin, northwest China, indicates that Tarim Basin was under extensional tectonic setting at this time. The half-grabens occur within a linear zone and the normal faults are arranged in en echelon patterns with gradually increasing displacement eastward. Extensional tectonics resulted in the formation of a passive continental margin in the southwest and a cratonic margin depression in the east, and most importantly, influenced the development of a three- pronged rift in the northeast margin of the Tarim Basin. The fault system controlled the development of platform -- slope -- bathyal facies sedimentation of mainly limestone-dolomite-gypsum rock-saline rock-red beds in the half-grabens. The NW-SE trending half-grabens reflect the distribution of buried basement faults.展开更多
Based on the available original dust storm records from 60 meteorological stations, we discussed the identification standard of severe dust storms at a single station and constructed a quite complete time series of se...Based on the available original dust storm records from 60 meteorological stations, we discussed the identification standard of severe dust storms at a single station and constructed a quite complete time series of severe group dust storms in the eastern part of Northwest China in 1954–2001. The result shows that there were 99 severe group dust storms in this region in recent 48 years. The spatial distribution indicates that the Alax Plateau, most parts of the Ordos Plateau and most parts of the Hexi Corridor are the main areas influenced by severe group dust storms. In addition, the season and the month with the most frequent severe group dust storms are spring and April, accounting for 78.8% and 41.4% of the total events respectively. During the past 48 years the lowest rate of severe group dust storms occurred in the 1990s. Compared with the other 4 decades, on the average, the duration and the affected area of severe group dust storms are relatively short and small during the 1990s. In 2000 and 2001, there were separately 4 severe group dust storms as the higher value after 1983 in the eastern part of Northwest China.展开更多
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its s...NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.展开更多
The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess th...The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess the storm, which affected the Northwest Pacific Ocean (NWP) and the South China Sea (SCS). Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies, where typhoon-induced upwelling may cause strong ocean cooling. In addition, the anomalous SST cooling is stronger in the SCS than in the NWP. The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS--a feature that is absent in the NWE The near-inertial oscillations can be generated as typhoon wakes, which have maximum flow velocity in the surface mixed layer and may last for a few days, after the typhoon's passage. Along the typhoon tracks, the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.展开更多
The upper Qigeblaq Formation (Fm) dolostones and the Yurtus Fm phosphatic cherts, black shales, limestones, and dolostones are widely distributed in the Precambrian/Cambrian transitional succession of the Aksu-Wushi...The upper Qigeblaq Formation (Fm) dolostones and the Yurtus Fm phosphatic cherts, black shales, limestones, and dolostones are widely distributed in the Precambrian/Cambrian transitional succession of the Aksu-Wushi area. Negative δ13C excursion above the Yurtus Fm/ Qigeblaq Fm boundary was determined in this study. The pronounced negative carbon isotope excursion occurs in the phosphatic chert layers at the bottom of the Cambrian Yurtus Fm, below which the first appearance of the Asteridium- Heh'osphaeridium-Comasphaeridium (AHC) acritarch assemblage zone. The δ13C curve of the lower part of the Yurtus Fm in the Aksu-Wushi area was found to be correlated with the early Cambrian δ13C curves of the Zhujiaqing Fm (Daibu Member), the lower part of the Yanjiahe Fm on the Yangtze Platform in China, the lower Tal Fm in India, the Sukharikha Fm in Siberia, and the upper part of the Tsagaan Oloom Fm in Mongolia through biostigraphy. The lower part of the Yurtus Fm in the Tarim Basin is at the Nemakit-Daldynian stage, and the Precambrian/Cambrian boundary of the Aksu-Wushi area may be located in the phosphatic chert unit which just below the first appearance AHC acritarch assemblage zone. The negative δ13C excursion (N1) across the Precambrian/Cambrian boundary in the studied section may have resulted from oceanic overturning and sea level rise.展开更多
It is pointed out that the proportion of urban population is high but synthetical urbanization level is low in northwest China.The urban spacial distribution is influenced by usage of water resource,exploitation of mi...It is pointed out that the proportion of urban population is high but synthetical urbanization level is low in northwest China.The urban spacial distribution is influenced by usage of water resource,exploitation of mineral resource and constrained by transportation lines. The urban distribution is equipped with beaded characteristic.It reveals that the main obstruction for urbanization are fragile economic basement, weak transportation facilities,low synthetical transportation capacity.It provides strategies of developing modern transportation,strengthening resource exploitation concentratively developing leading industries, establishing self-growh mechanism to improve urbanization level as a whole.展开更多
The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beisha...The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.展开更多
Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activ...Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activity has been documented by multiple data sources in Northwest China, including meteorological, reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF), National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder (TOVS) satellite remote sensing data. As the ground-level thermodynamic activity increases, humid air from the surrounding regions converge toward desert (and semi-desert) regions, causing areas with high vegetation cover to become gradually more arid. Furthermore, land surface changes in Northwest China are responsible for a decrease in total cloud cover, a decline in the fraction of low and middle clouds, an increase in high cloud cover (due to thermodynamic activity) and other regional climatic adaptations. It is proposed that, beginning in 1995, these cloud cover changes contributed to a "green- house" effect, leading to the rapid air temperature increases and other regional climate impacts that have been observed over Northwest China.展开更多
Winter coastal upwelling off northwest Borneo in the South China Sea (SCS) is investigated by using satellite data, climatological temperature and salinity fields and reanalysis data. The upwelling forms in Decem- b...Winter coastal upwelling off northwest Borneo in the South China Sea (SCS) is investigated by using satellite data, climatological temperature and salinity fields and reanalysis data. The upwelling forms in Decem- ber, matures in January, starts to decay in February and almost disappears in March. Both Ekman trans- port induced by the alongshore winter monsoon and Ekman pumping due to orographic wind stress curl are favorable for the upwelling. Transport estimates demonstrate that the month-to-month variability of Ekman transport and Ekman pumping are both consistent with that of winter coastal upwelling, but Ek- man transport is two times larger than Ekman pumping in January and February. Under the influence of E1 Nino-Southern Oscillation (ENSO), the upwelling shows remarkable interannual variability: during winter of El Nino (La Nina) years, an anticyclonic (a cyclonic) wind anomaly is established in the SCS, which behaves a northeasterly (southwesterly) anomaly and a positive (negative) wind stress curl anomaly off the north- west Borneo coast, enhancing (reducing) the upwelling and causing anomalous surface cooling (warming) and higher (lower) chlorophyll concentration. The sea surface temperature anomaly (SSTA) associated with ENSO off the northwest Borneo coast has an opposite phase to that off southeast Vietnam, resulting in a SSTA seesaw pattern in the southern SCS in winter.展开更多
The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to dec...The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalized (La/Ce) N ratio increases from 1.36 at the bottom to 3.13 at the top. These REE patterns are very similar to those for the cherts deposited in the pelagic ocean-basin floor in the Franciscan Complex exposed at Marin Headlands, California (F-MH chert) (Murray et al., 1991). These geochemical signatures are inconsistent with our previous sedimentological data, which suggests a continental shelf setting. Based on multiple lines of evidence including high TOC content in the concomitant black shales, phosphorite at the bottom of black rock series, regional rise of sea level, and beginning of the southern Tianshan Ocean geotectonic cycle, the authors infer that the hydrothermal fluid was carried to the continental shelf by upwelling from a divergent pelagic ocean floor setting.展开更多
[Objective] The research aimed to study the correlated characteristics between spring precipitation in the arid region of Northwest China and global sea surface temperature. [Method] Based on GPCP global monthly preci...[Objective] The research aimed to study the correlated characteristics between spring precipitation in the arid region of Northwest China and global sea surface temperature. [Method] Based on GPCP global monthly precipitation data and NOAA ERSST sea surface temperature data during 1979-2008, the precipitation characteristics in the arid region of Northwest China in 30 years and its correlated distribution characteristics with the global sea surface temperature were analyzed by using the correlation and composite analysis methods. [Result] Spring rainfall presented the fluctuation increasing in the arid region of Northwest China during 1979-2008. The sea surface temperature of Indian Ocean in 15° S-22° N, 45°-105° E had the continuous influence on spring precipitation in the arid region of Northwest China. It could be as a stable factor for forecasting spring precipitation in the arid region zone of Northwest China. When the sea surface temperature was higher in Indian Ocean, Bay of Bengal and Arabian Sea, maybe spring precipitation in the arid region of Northwest China was more. If the sea surface temperature in the equatorial Eastern Pacific Ocean in prior summer, autumn and winter was higher, it was favorable for spring precipitation in the arid region of Northwest China in the next year. The sea surface temperature field in Arabian Sea, Central Indian Ocean and Western Pacific Ocean was the key factor which affected spring precipitation in the arid region of Northwest China. [Conclusion] The research provided the theory basis for the prediction and forecast of precipitation in the arid region.展开更多
基金supported by the National Natural Science Foun-dation of China [grant numbers 41991281 and 42005028]。
文摘Drought across Northwest China in late spring has exerted a vital effect on the local climate and agricultural production,and has been alleviated during the past decades.This study explored the influence of the preceding Arctic sea ice on the May drought in Northwest China caused by the precipitation deficit.Further analysis indicated that when the Greenland Sea ice concentration is abnormally high during February to April,the dry conditions in Northwest China tend to be alleviated.The increase of sea ice in the Greenland Sea can excite a meridional circulation,which causes sea surface temperature(SST)anomalies in the North Atlantic via the sea-air interaction,manifested as significant warm SST anomalies over the south of Greenland and the subtropical North Atlantic,but negative SST anomalies over the west of the Azores.This abnormal SST pattern maintains to May and triggers a zonal wave train from the North Atlantic through Scandinavia and Central Asia to Northwest China,leading to abnormal cyclones in Northwest China.Consequently,Northwest China experiences a more humid climate than usual.
基金financially supported by the National Natural Sciences Foundation of China(42330503,42171068)the Third Xinjiang Scientific Expedition Program(2022xjkk0901)the Tianshan Talent Training Program(2023TSYCLJ0048).
文摘Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.
基金funded by the National Natural Science Foundation of China(42171145,42171147)the Gansu Provincial Science and Technology Program(22ZD6FA005)the Key Talent Program of Gansu Province.
文摘Rain-on-snow(ROS)events involve rainfall on snow surfaces,and the occurrence of ROS events can exacerbate water scarcity and ecosystem vulnerability in the arid region of Northwest China(ARNC).In this study,using daily snow depth data and daily meteorological data from 68 meteorological stations provided by the China Meteorological Administration National Meteorological Information Centre,we investigated the spatiotemporal variability of ROS events in the ARNC from 1978 to 2015 and examined the factors affecting these events and possible changes of future ROS events in the ARNC.The results showed that ROS events in the ARNC mainly occurred from October to May of the following year and were largely distributed in the Qilian Mountains,Tianshan Mountains,Ili River Valley,Tacheng Prefecture,and Altay Prefecture,with the Ili River Valley,Tacheng City,and Altay Mountains exhibiting the most occurrences.Based on the intensity of ROS events,the areas with the highest risk of flooding resulting from ROS events in the ARNC were the Tianshan Mountains,Ili River Valley,Tacheng City,and Altay Mountains.The number and intensity of ROS events in the ARNC largely increased from 1978 to 2015,mainly influenced by air temperature and the number of rainfall days.However,due to the snowpack abundance in areas experiencing frequent ROS events in the ARNC,snowpack changes exerted slight impact on ROS events,which is a temporary phenomenon.Furthermore,elevation imposed lesser impact on ROS events in the ARNC than other factors.In the ARNC,the start time of rainfall and the end time of snowpack gradually advanced from the spring of the current year to the winter of the previous year,while the end time of rainfall and the start time of snowpack gradually delayed from autumn to winter.This may lead to more ROS events in winter in the future.These results could provide a sound basis for managing water resources and mitigating related disasters caused by ROS events in the ARNC.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1205)the Tianshan Talent Training Program (2023TSYCTD0084)+2 种基金the Science and Technology Major Program of Xinjiang Uygur Autonomous Region (2023A01002)the Young Top Talents of Xinjiang Normal University (XJNUQB2022-29)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020437)
文摘In the context of changes in global climate and land uses,biodiversity patterns and plant species distributions have been significantly affected.Soil salinization is a growing problem,particularly in the arid areas of Northwest China.Halophytes are ideal for restoring soil salinization because of their adaptability to salt stress.In this study,we collected the current and future bioclimatic data released by the WorldClim database,along with soil data from the Harmonized World Soil Database(v1.2)and A Big Earth Data Platform for Three Poles.Using the maximum entropy(MaxEnt)model,the potential suitable habitats of six halophytic plant species(Halostachys caspica(Bieb.)C.A.Mey.,Halogeton glomeratus(Bieb.)C.A.Mey.,Kalidium foliatum(Pall.)Moq.,Halocnemum strobilaceum(Pall.)Bieb.,Salicornia europaea L.,and Suaeda salsa(L.)Pall.)were assessed under the current climate conditions(average for 1970-2000)and future(2050s,2070s,and 2090s)climate scenarios(SSP245 and SSP585,where SSP is the Shared Socio-economic Pathway).The results revealed that all six halophytic plant species exhibited the area under the receiver operating characteristic curve values higher than 0.80 based on the MaxEnt model,indicating the excellent performance of the MaxEnt model.The suitability of the six halophytic plant species significantly varied across regions in the arid areas of Northwest China.Under different future climate change scenarios,the suitable habitat areas for the six halophytic plant species are expected to increase or decrease to varying degrees.As global warming progresses,the suitable habitat areas of K.foliatum,S.salsa,and H.strobilaceum exhibited an increasing trend.In contrast,the suitable habitat areas of H.glomeratus,S.europaea,and H.caspica showed an opposite trend.Furthermore,considering the ongoing global warming trend,the centroids of the suitable habitat areas for various halophytic plant species would migrate to different degrees,and four halophytic plant species,namely,S.salsa,H.strobilaceum,H.glomeratus,and H.capsica,would migrate to higher latitudes.Temperature,precipitation,and soil factors affected the possible distribution ranges of these six halophytic plant species.Among them,precipitation seasonality(coefficient of variation),precipitation of the warmest quarter,mean temperature of the warmest quarter,and exchangeable Na+significantly affected the distribution of halophytic plant species.Our findings are critical to comprehending and predicting the impact of climate change on ecosystems.The findings of this study hold significant theoretical and practical implications for the management of soil salinization and for the utilization,protection,and management of halophytes in the arid areas of Northwest China.
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金Supported by Key Technologies R&D Program from Ministry of Science and Technology of the People's Republic of China (2007BAD46B08)Program for Fostering Special Talents of Glaciology and Cryopedology of the National Basic Sciences Talents Fundation(J0630966)+1 种基金Key Technologies R&D Program of Gansu Province(090NKCA075)Natural Science Fundation of Gansu Province (3ZS041-A25-002)
文摘Through summarizing the research status of emergy analysis at home and abroad,the basic connotation and judgment standard of emergy and indices were introduced in detail. Considering the characteristics of emergy analysis applied to the specific geographic scope in arid region in Northwest China,the problems which should be paid attention to and the corresponding suggestions as well as counter measures were put forward. Finally,trends in the further study of emergy analysis were forecasted.
基金Under the Major Special Science and Technology Project of Gansu Province(No.23ZDKA0004)。
文摘Due to the uncertainties posed by climate change,resilience has become an increasingly important variable for evaluating regional ecosystem stability.The assessment of Ecological Network Resilience(ENR)is crucial for establishing mitigation strategies and sustainable socioeconomic development in arid regions.Shiyang River Basin is an arid watershed in Northwest China with complex characteristics,its ENR and spatial differentiation characteristics in 2020 were investigated in this work based on the Complex Adaptive System(CAS)theory.The results indicated that the mean Ecological Network Resilience Index(ENRI)value for the Shiyang River Basin was 0.390 in 2020,and the mean values in the southern mountainous,middle oasis,and northern desert regions of the basin were 0.598,0.461,and 0.237,respectively,demonstrating evident spatial differences.Additionally,the ENR of the basin exhibited distinct distribution characteristics across different dimension,whereas the trend of the integrated ENR of the basin was consistent with that of elemental,structural,and functional resilience,indicating the constructed three-region ENR model based on the logical relationship of element-structure-function was suitable for evaluation of the ENR in arid inland river watersheds.Furthermore,strategies for enhancing regional ENR were proposed from the perspective of adapting to climate change.
基金supported by the National Key Research and Development Program of China(2023YFC3206300)the National Natural Science Foundation of China(42477529,42371145,42261026)+2 种基金the China-Pakistan Joint Program of the Chinese Academy of Sciences(046GJHZ2023069MI)the Gansu Provincial Science and Technology Program(22ZD6FA005)the National Cryosphere Desert Data Center(E01Z790201).
文摘Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.
基金supported by the National Natural Science Foundation of China (41630859)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19030204)
文摘The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.
基金sponsored jointly by the National Natural Science Foundation of China(Grant No.41102087)the National Key Basic Research Program of China(No.2005CB422103)+1 种基金National"973"program(Grant No.2012CB214802)Major National Sci-Tech Projects(Grant Nos.2011ZX05005-002-010HZ. 2011ZX05009-002)
文摘The fact that several half-grabens and normal faults developed in the Lower--Middle Cambrian of Tazhong (central Tarim Basin) and Bachu areas in Tarim Basin, northwest China, indicates that Tarim Basin was under extensional tectonic setting at this time. The half-grabens occur within a linear zone and the normal faults are arranged in en echelon patterns with gradually increasing displacement eastward. Extensional tectonics resulted in the formation of a passive continental margin in the southwest and a cratonic margin depression in the east, and most importantly, influenced the development of a three- pronged rift in the northeast margin of the Tarim Basin. The fault system controlled the development of platform -- slope -- bathyal facies sedimentation of mainly limestone-dolomite-gypsum rock-saline rock-red beds in the half-grabens. The NW-SE trending half-grabens reflect the distribution of buried basement faults.
基金The National Key Basic Research Project of China, No. G2000048703 The Knowledge Innovation Project of CAS, No. KZCX2-305 Key Research Project of NSMC, No.NSMC-Y0101
文摘Based on the available original dust storm records from 60 meteorological stations, we discussed the identification standard of severe dust storms at a single station and constructed a quite complete time series of severe group dust storms in the eastern part of Northwest China in 1954–2001. The result shows that there were 99 severe group dust storms in this region in recent 48 years. The spatial distribution indicates that the Alax Plateau, most parts of the Ordos Plateau and most parts of the Hexi Corridor are the main areas influenced by severe group dust storms. In addition, the season and the month with the most frequent severe group dust storms are spring and April, accounting for 78.8% and 41.4% of the total events respectively. During the past 48 years the lowest rate of severe group dust storms occurred in the 1990s. Compared with the other 4 decades, on the average, the duration and the affected area of severe group dust storms are relatively short and small during the 1990s. In 2000 and 2001, there were separately 4 severe group dust storms as the higher value after 1983 in the eastern part of Northwest China.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40633018 and 40675036)
文摘NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/weak ascending motion and correspondingly constructs a secondary circulation cell in lesser/greater precipitation years.
基金supported by the National Key Basic Research and Development Plan(Grant No.2015CB953900)the National Natural Science Foundation of China(Grant No.41176005)+1 种基金the Public Science and Technology Research Funds Projects of the Ocean(Grant No.GYHY201105018)the China R&D Special Fund for Public Welfare Industry(GYHY 201306016)
文摘The upper-ocean responses to Typhoon Megi (2010) are investigated using data from ARGO floats and the satellite TMI. The experiments are conducted using a three-dimensional Princeton Ocean Model (POM) to assess the storm, which affected the Northwest Pacific Ocean (NWP) and the South China Sea (SCS). Results show that the upwelling and entrainment experiment together account for 93% of the SST anomalies, where typhoon-induced upwelling may cause strong ocean cooling. In addition, the anomalous SST cooling is stronger in the SCS than in the NWP. The most striking feature of the ocean response is the presence of a two-layer inertial wave in the SCS--a feature that is absent in the NWE The near-inertial oscillations can be generated as typhoon wakes, which have maximum flow velocity in the surface mixed layer and may last for a few days, after the typhoon's passage. Along the typhoon tracks, the horizontal currents in the upper ocean show a series of alternating negative and positive anomalies emanating from the typhoon.
基金financially supported by the National Natural Science Foundation of China (Grant No.41203023)National Basic Research Program of China (Grant No.2007CB411301)
文摘The upper Qigeblaq Formation (Fm) dolostones and the Yurtus Fm phosphatic cherts, black shales, limestones, and dolostones are widely distributed in the Precambrian/Cambrian transitional succession of the Aksu-Wushi area. Negative δ13C excursion above the Yurtus Fm/ Qigeblaq Fm boundary was determined in this study. The pronounced negative carbon isotope excursion occurs in the phosphatic chert layers at the bottom of the Cambrian Yurtus Fm, below which the first appearance of the Asteridium- Heh'osphaeridium-Comasphaeridium (AHC) acritarch assemblage zone. The δ13C curve of the lower part of the Yurtus Fm in the Aksu-Wushi area was found to be correlated with the early Cambrian δ13C curves of the Zhujiaqing Fm (Daibu Member), the lower part of the Yanjiahe Fm on the Yangtze Platform in China, the lower Tal Fm in India, the Sukharikha Fm in Siberia, and the upper part of the Tsagaan Oloom Fm in Mongolia through biostigraphy. The lower part of the Yurtus Fm in the Tarim Basin is at the Nemakit-Daldynian stage, and the Precambrian/Cambrian boundary of the Aksu-Wushi area may be located in the phosphatic chert unit which just below the first appearance AHC acritarch assemblage zone. The negative δ13C excursion (N1) across the Precambrian/Cambrian boundary in the studied section may have resulted from oceanic overturning and sea level rise.
文摘It is pointed out that the proportion of urban population is high but synthetical urbanization level is low in northwest China.The urban spacial distribution is influenced by usage of water resource,exploitation of mineral resource and constrained by transportation lines. The urban distribution is equipped with beaded characteristic.It reveals that the main obstruction for urbanization are fragile economic basement, weak transportation facilities,low synthetical transportation capacity.It provides strategies of developing modern transportation,strengthening resource exploitation concentratively developing leading industries, establishing self-growh mechanism to improve urbanization level as a whole.
基金This paper is supported by the National 305 Program (Nos. 2001BA609A-07-02, 2006BAB07B02-04)Research Foundation of former Ministry of Geology and Mineral Re-sources of China (No.96-21)
文摘The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anlsotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.
基金jointly supported by the Key Project of Chinese Academy of Sciences(Grant No.KZCX3-SW-221)the National Natural Science Foundation of China(Grant Nos.40675047 and 40233027).
文摘Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activity has been documented by multiple data sources in Northwest China, including meteorological, reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF), National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder (TOVS) satellite remote sensing data. As the ground-level thermodynamic activity increases, humid air from the surrounding regions converge toward desert (and semi-desert) regions, causing areas with high vegetation cover to become gradually more arid. Furthermore, land surface changes in Northwest China are responsible for a decrease in total cloud cover, a decline in the fraction of low and middle clouds, an increase in high cloud cover (due to thermodynamic activity) and other regional climatic adaptations. It is proposed that, beginning in 1995, these cloud cover changes contributed to a "green- house" effect, leading to the rapid air temperature increases and other regional climate impacts that have been observed over Northwest China.
基金The National Natural Science Foundation of China under contract No.91128212the National Natural Science Foundation of China under contract No.41306024+3 种基金the National Basic Research Program of China under contract No.2013CB430301the National Science Fund of China for Distinguished Young Scholars(NSFDYS)under contract No.41125019the Project of Global Change and Air-Sea Interaction under con-tract No.GASI-03-01-03-03the Basic Research Program of Second Institute of Oceanography,State Oceanic Administration of China under contract No.JT1301
文摘Winter coastal upwelling off northwest Borneo in the South China Sea (SCS) is investigated by using satellite data, climatological temperature and salinity fields and reanalysis data. The upwelling forms in Decem- ber, matures in January, starts to decay in February and almost disappears in March. Both Ekman trans- port induced by the alongshore winter monsoon and Ekman pumping due to orographic wind stress curl are favorable for the upwelling. Transport estimates demonstrate that the month-to-month variability of Ekman transport and Ekman pumping are both consistent with that of winter coastal upwelling, but Ek- man transport is two times larger than Ekman pumping in January and February. Under the influence of E1 Nino-Southern Oscillation (ENSO), the upwelling shows remarkable interannual variability: during winter of El Nino (La Nina) years, an anticyclonic (a cyclonic) wind anomaly is established in the SCS, which behaves a northeasterly (southwesterly) anomaly and a positive (negative) wind stress curl anomaly off the north- west Borneo coast, enhancing (reducing) the upwelling and causing anomalous surface cooling (warming) and higher (lower) chlorophyll concentration. The sea surface temperature anomaly (SSTA) associated with ENSO off the northwest Borneo coast has an opposite phase to that off southeast Vietnam, resulting in a SSTA seesaw pattern in the southern SCS in winter.
基金the National NaturalScience Foundation of China(Project Nos.40172042,40472064 , 40228004)the Ministry of Science and Technology of China(Project No.G1999043304) the Special Foundation for Doctor Subjects in China(Project No.200049107).
文摘The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crushed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo, As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts. These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondrite- normalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northern Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu* ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ΣREEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu) N ratio decreases from 2.72 at the bottom to 0.67 at the top. NASC-normalized (La/Ce) N ratio increases from 1.36 at the bottom to 3.13 at the top. These REE patterns are very similar to those for the cherts deposited in the pelagic ocean-basin floor in the Franciscan Complex exposed at Marin Headlands, California (F-MH chert) (Murray et al., 1991). These geochemical signatures are inconsistent with our previous sedimentological data, which suggests a continental shelf setting. Based on multiple lines of evidence including high TOC content in the concomitant black shales, phosphorite at the bottom of black rock series, regional rise of sea level, and beginning of the southern Tianshan Ocean geotectonic cycle, the authors infer that the hydrothermal fluid was carried to the continental shelf by upwelling from a divergent pelagic ocean floor setting.
基金Supported by Public Welfare Industry Special Project of China Meteorological Administration(201006023)
文摘[Objective] The research aimed to study the correlated characteristics between spring precipitation in the arid region of Northwest China and global sea surface temperature. [Method] Based on GPCP global monthly precipitation data and NOAA ERSST sea surface temperature data during 1979-2008, the precipitation characteristics in the arid region of Northwest China in 30 years and its correlated distribution characteristics with the global sea surface temperature were analyzed by using the correlation and composite analysis methods. [Result] Spring rainfall presented the fluctuation increasing in the arid region of Northwest China during 1979-2008. The sea surface temperature of Indian Ocean in 15° S-22° N, 45°-105° E had the continuous influence on spring precipitation in the arid region of Northwest China. It could be as a stable factor for forecasting spring precipitation in the arid region zone of Northwest China. When the sea surface temperature was higher in Indian Ocean, Bay of Bengal and Arabian Sea, maybe spring precipitation in the arid region of Northwest China was more. If the sea surface temperature in the equatorial Eastern Pacific Ocean in prior summer, autumn and winter was higher, it was favorable for spring precipitation in the arid region of Northwest China in the next year. The sea surface temperature field in Arabian Sea, Central Indian Ocean and Western Pacific Ocean was the key factor which affected spring precipitation in the arid region of Northwest China. [Conclusion] The research provided the theory basis for the prediction and forecast of precipitation in the arid region.