On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonio...On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching 'decisi"ofi-makifig support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the -integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.展开更多
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
Microorganisms are fundamental for the functioning of marine ecosystems and are involved in the decomposition of organic matter, transformation of nutrients and circulation of biologically-important chemicals. Based o...Microorganisms are fundamental for the functioning of marine ecosystems and are involved in the decomposition of organic matter, transformation of nutrients and circulation of biologically-important chemicals. Based on the complexity of the natural geographic characteristics of the Changjiang River Estuary, the geographic distribution of sedimentary microorganisms and the causes of this distribution are largely unexplored. In this work, the surface sediment samples from the adjacent sea area of the Changjiang River Estuary were collected. Their prokaryotic diversity was examined by high-throughput sequencing technology, and the environmental factors of the bacterial community were investigated. The results indicated that the distribution of prokaryotic communities in the sediments of the study areas showed obvious spatial heterogeneity. The sampling sequences divided the sample regions into three distinct clusters. Each geographic region had a unique community structure, although Proteobacteria, Bacteroidota, Desulfobacterota, Acidobacteriota, and Actinobacteriota all existed in these three branches. Canonical correspondence analysis demonstrated that prokaryotic diversity and community distribution were significantly correlated with the geographic location of sediment, seawater depth, and in particular, nutrient content(e.g., total phosphorus, total organic carbon and dissolved oxygen). Moreover, it was found for the first time that the metal ions obviously affected the composition and distribution of the prokaryotic community in this area. In general, this work provides new insights into the structural characteristics and driving factors of prokaryotic communities under the background of the ever-changing Changjiang River Estuary.展开更多
Han River to Wei River Water Diversion Project in Shaanxi Province is an inter-basin water diversion project approved by the State Council in 2005,which is a key hydraulic project in the 12th Five-Year Plan of China.I...Han River to Wei River Water Diversion Project in Shaanxi Province is an inter-basin water diversion project approved by the State Council in 2005,which is a key hydraulic project in the 12th Five-Year Plan of China.It is expected to solve water resources shortage in the Guanzhong area of Shaanxi Province,effectively curb the deterioration of ecological environment in Wei River and reduce environmental geological disasters in the Guanzhong area.It is a strategic project for optimal allocation of water resources by adjusting the distribution of water resources in Shaanxi Province and promoting the economic development of the Guanzhong-Tianshui Economic Zone.Implementation of the project is of great importance to the sustainable economic and social development of the Guanzhong area.The project crosses the Yangtze River and Yellow River basins and passes through the Qinling Mountain.The huge-scale project has a profound historic impact on the economic development in the region.展开更多
The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90º...The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90ºturn within a distance of 1 km at Shimian,heading east,and joins the Yangtze River,finally flowing into the East China Sea.Adjacent to the abrupt turn,a low and wide pass near the Daqiao reservoir at Mianning separates the N–S course of the Dadu River from the headwater of the Anning River which then flows south into the Yunnan Province along the Anninghe fault.Therefore,many previous studies assumed southward flow of the paleo-Dadu River from the Shimian to the Anning River.However,evidences for the capture of the integrated N–S paleo-Dadu-Anning River,its timing,and causes are still insufficient.This study explored the paleo-drainage pattern of the Dadu and Anning Rivers based on bulk mineral and geochemical analyses of the large quantities of fluvial/lacustrine sediments along the trunk of the Dadu and Anning Rivers.Similar with sands in the modern Dadu River,the Xigeda sediments also exhibit a granitoid affinity with the bulk major mineral compositions of quartz(>50%),anorthite(about 10%),orthoclase(about 5%),muscovite(about 5%),and clinochlore(about 4%).Correspondingly,bulk major elements show high SiO_(2),with all samples>60%,and some of them>70%,low TiO_(2)(≤0.75%),P_(2)O_(5)(≤0.55%),FeO*(≤5%),and relatively high CaO(1.02%–8.51%),Na_(2)O(1.60%–2.52%),and K_(2)O(2.17%–2.71%),with a uniform REE patterns.Therefore,synthesizing all these results indicate that these lacustrine sediments have similar material sources,which are mainly derived from its course in the Songpan-Ganzi flysch block,implying that the paleo-Dadu originally flowed southward into the Anning River and provided materials to the Xigeda ancient lake.The rearrangement of the paleo-Dadu River appears to be closely related to the locally focused uplift driven by strong activities of the XianshuiheXiaojiang fault system.展开更多
Diversion of the Yellow River is a unique geological event in offshore China,causing changes of the sedimentary environment in eastern China Seas.The last diversion took place in AD 1855,with the estuary diverted from...Diversion of the Yellow River is a unique geological event in offshore China,causing changes of the sedimentary environment in eastern China Seas.The last diversion took place in AD 1855,with the estuary diverted from the Yellow Sea into the Bohai Sea.The identification of the river diversion events in the shelf sediments would not only provide the definite ages for the sediments,but also give a clue for better understanding of the sedimentation in that area.In this study,210 Pb,grain size,geochemical element,and foraminiferal data in core H205 from the north Yellow Sea were systematically investigated.A high-resolution sedimentary record was established,which was coupled with the Yellow River diversion and runoff changes.The results show that the foraminiferal composition and foraminiferal abundance of the sediments from the north Yellow Sea had good response to the Yellow River diversion in 1855.Before the change,shallow water assemblages dominated the foraminifera,and the abundance of each foraminiferal species was very low.After the diversion event,the abundance of most foraminifera increased sharply,with a maximum increase of 16 times,and the assemblage was still dominated by shallow water species.Furthermore,the changes in foraminiferal abundance in the core sediments corresponded well with the discharge fluctuation of the Yellow River since 1855.When the Yellow River began entering the Bohai Sea,the Yellow River water,which is rich in nutrients,along with the coastal currents affected the north Yellow Sea,increased the primary productivity in the north Yellow Sea,which is the main reason for the abrupt increase and fluctuation of foraminiferal abundance in this area.At the meantime,the East Asian winter monsoon could also promote the development of nearshore foraminiferal species by enhancing the coastal currents.展开更多
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s...Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.展开更多
In this paper, according to the rule of unbalanced sediment transport and the analysis of field data, different water diversion schemes were theoretically studied, including the erosion and sedimentation trend as well...In this paper, according to the rule of unbalanced sediment transport and the analysis of field data, different water diversion schemes were theoretically studied, including the erosion and sedimentation trend as well as their impacts on the environment of the middle and lower reaches of the Hanjiang River. The results showed that the 95×10 8m 3 water diversion scheme will cause less erosion and water level decrease than the 15×10 8m 3 water diversion scheme. Using a water diversion scheme of 95×10 8m 3, the decrease of water quantity can impact the river hydrodynamic regime substantially and the environments of the middle and lower reaches of the Hanjiang River will be greatly affected. It is therefore necessary to develop new water resources or build projects to meet the need of the environment and the needs for navigation.展开更多
The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funded construction of the West Bay Sediment Diversion Project (WBSD) on the west bank of the Mississippi River for the purpose of coastal restora...The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funded construction of the West Bay Sediment Diversion Project (WBSD) on the west bank of the Mississippi River for the purpose of coastal restoration. A multi-tiered sediment study for the WBSD was conducted to determine impacts to the adjacent navigation channel and to the Pilottown Anchorage Area (PAA). One tier of the study is the implementation of HEC-6T, a one-dimensional (1-D) sediment model, to evaluate the regional impacts of the WBSD. The HEC-6T model results shows the long-term channel changes associated with the WBSD to be increasing shoaling in the adjacent areas on the order of 10% - 20%, as compared to the no WBSD condition. However, it is extremely difficult to isolate the impacts associated with a single diversion due to multiple diversions in the region. From a holistic vantage point, the 1-D model shows the necessity to examine, on a regional scale, the lower Mississippi River as a single congruent system on a regional scale.展开更多
On the Cavally River, located on the border between C?te d’Ivoire and Liberia, several hydraulic structures such as bridges and diversion channels are planned to be made in recent years in the operating perimeter of ...On the Cavally River, located on the border between C?te d’Ivoire and Liberia, several hydraulic structures such as bridges and diversion channels are planned to be made in recent years in the operating perimeter of the Ity mining company. A 1D-2D hydraulic model was developed to design a diversion channel to cut a meander of the Cavally River in order to ensure hydraulic operation similar to the initial conditions of the river (water levels, flow and velocities). This model was designed with a flow rate of 240 m3/s and a Manning coefficient of 0.052 m1/3·s-1 for the minor bed and 0.06 m1/3·s-1 for the major bed. The results from the hydraulic model show that the hydraulic conditions (water levels, velocities) in the channel before and after the diversion remain almost like those of the Cavally River.展开更多
Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities,thereby contributing to the difficulty in identifying spat...Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities,thereby contributing to the difficulty in identifying spatiotemporal variations and influencing factors of plant diversity.A unique estuarine wetland gradient system(UEWGS)consisting of soil,vegetation,heat,distance,landscape,and anthropogenic gradients was established based on the ecological features of estuarine wetland through remote sensing and field investigation methods.It resolved the complicated land surface characteristics,covered all aspects of factors influencing plant diversity,and possessed distinct spatiotemporal heterogeneities.The Yellow River Delta,the largest estuarine wetland in the northern China,was selected as the study area to demonstrate UEWGS in four seasons in 2017.A total of 123 species were recorded with considerable seasonal difference.Phragmites australis,Suaeda salsa,and Tamarix chinensis were the dominant species,and crop species also played important roles.In single effect,all aspects of gradients exerted significant influences,yet only vegetation gradient possessed significant influences in all seasons.In comprehensive effect,soil,vegetation,heat,and distance gradients showed significant gross influences.Moisture content in soil gradient and net primary productivity in vegetation gradient possessed significant net influences in all seasons and can be considered as the main driving factor and indicator,respectively,of plant diversity.The results validated the significance of UEWGS in revealing the plant diversity spatiotemporal characteristics and influencing factors,and UEWGS possessed universal applicability in the spatiotemporal analysis of plant diversity in estuarine areas.展开更多
We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and th...We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.展开更多
Chinese mitten crab (Eriocheir sinensis) is an indigenous and ecologically and economically important species in the Liao River area, but its identification and genetic diversity remain poorly understood. To evaluat...Chinese mitten crab (Eriocheir sinensis) is an indigenous and ecologically and economically important species in the Liao River area, but its identification and genetic diversity remain poorly understood. To evaluate the germplasm resources of this species, samples were collected from these locations: four sub-populations from the Liao River area and one population from the Yangtze River area; one primer was used to distinguish between the Liao River and the Yangtze River crabs. Thirteen loci were used for crab genetic diversity analysis, and basic statistics showed that the collecting samples were purebred in the Liao River area. The average observed heterozygosity (H0) of the Liao River population was 0.5931, and the expected heterozygosity (He) was 0.8064. The polymorphism information content (PIC) was 0.7753, which showed that the Liao River population had high genetic diversity. The genetic differentiation index (FST) averaged 0.0342, meaning a low degree of differentiation; cluster analysis indicated that Hujia (HJ), Xinli (XL) and Chenjia (CJ) sub-populations were allocated to the same cluster, while Baqiangzi (BQZ) sub-population was isolated. In summary, these data demonstrated that the crabs in the Liao River had high genetic diversity, but low genetic differentiation. Thus, the Liao River population had the potential for breeding selection. Furthermore, this study also provided valuable genetic information for the conservation of Chinese mitten crab.展开更多
Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then t...Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then the co-relationship between genus species of soil dematiaceous hyphomycetes and ecosystem-types was analyzed. The results show that the amount and species distribution of soil dematiaceous hyphomycetes had an obvious variability in different ecosystem-types, and that the dominant genus species varied in the eight ecosystem-types studied, with Cladosporium being the dominant genus in seven of the eight ecosystem-types except wetland. The index of species diversity varied in different ecosystem-types. The niche breadth analysis showed that Cladosporium had the highest niche breadth and distributed in all ecosystem-types, while the genera with a narrow niche breadth distributed only in a few ecosystem-types. The results of niche overlap index analysis indicated that Stachybotrys and Torula, Doratomyces and Scolecobasidium, Cladosporium and Chrysosporium had a higher niche overlap, whereas Arthrinium and Gliomastix, Phialophora and Doratomyces, Oidiodendron and Ulocladium had no niche overlap.展开更多
The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upst...The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.展开更多
It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this stu...It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.展开更多
To provide accurate base data about the genetic sourees of Yellow River carps, the genetic diversity in a^ficially bred population and wild population of Yellow River carps from Henan Province was analyzed with mieros...To provide accurate base data about the genetic sourees of Yellow River carps, the genetic diversity in a^ficially bred population and wild population of Yellow River carps from Henan Province was analyzed with mierosatellite markers. The results showed that 16 alleles were detected at six microsateUite loci in each population. The average effective number of alleles (Ne) was 2. 350 in artificially bred population and 2. 085 in wild population. The observed heterozygosity (Ho) of artificially bred population, wild population and mixed population was 0. 614, 0. 576 and 0. 601 ; and the unbiased expected heterozygesity ( He ) was 0. 569, 0.535 and 0.559 ; and the polymorphism infonnatian content (PlC) was 0.474, 0.428 and 0.468, respectively. The PIC of the six loci ranged from 0.304 to 0. 864. The analysis of the genetic differentiation for the six microsatellitc loci in the two populations showed that the genetic differentiation coefficient ( F,, ) at only one microsatellite locus HLJ483 was greater than 0.05, and that at five rnicrosatellite loci were less than 0.05, which was consistent with the standard of non- genetic differentiation between populations (F,, = 0 -0.05). The average F,, at the six loci was 0.02, and the gene flow value (Nm) at all loci was greater than 1 and the average of Nm was 12.202. The results indicate that there is relatively abundant genetic diversity in Yellow River carps.展开更多
Surface snow samples of different altitudes and snow pit samples were collected from Glacier No. 1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity...Surface snow samples of different altitudes and snow pit samples were collected from Glacier No. 1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity and temporal-spatial characteristics of eukaryotic microorganisms with different altitudes and depths. Results show that the eukaryotic microorganisms belong to four kingdoms--Viridiplantae, Fungi, Amoebozoa, and Alveolata. Among them, algae (especially Chlamydomonadales) were the dominant group. The diversity of eukaryotic microorganisms was negatively correlated with altitude and accumulation time, but positively correlated with 8180 values. These results indicate that temperature is the main factor for the temporal-spatial change of eukaryotic microorganisms, and the diversity of eukaryotic microorganisms could be an index for climate and environmental change.展开更多
基金supported by the Innovation Programmes of the Ministry of Water Resources (Grant No. SCXC2002-09)
文摘On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching 'decisi"ofi-makifig support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the -integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.
基金The National Natural Science Foundation of China under contract Nos 32000074 and 42176130the Science and Technology Planning Project of Guangxi under contract No. AA21196002+4 种基金the Natural Science Foundation of Shandong Province under contract No. ZR2021MD044the Tai Mountain Industry Leading Talent of Shandong under contract No. 2019TSCYCX-06the Key Research and Development Program of Shandong Province under contract No. 2021TZXD008the Biosafety Research Program under contract No.20SWAQX04the Shandong Program of Pilot National Laboratory for Marine Science and Technology (Qingdao)under contract No. 2022QNLM030003-1。
文摘Microorganisms are fundamental for the functioning of marine ecosystems and are involved in the decomposition of organic matter, transformation of nutrients and circulation of biologically-important chemicals. Based on the complexity of the natural geographic characteristics of the Changjiang River Estuary, the geographic distribution of sedimentary microorganisms and the causes of this distribution are largely unexplored. In this work, the surface sediment samples from the adjacent sea area of the Changjiang River Estuary were collected. Their prokaryotic diversity was examined by high-throughput sequencing technology, and the environmental factors of the bacterial community were investigated. The results indicated that the distribution of prokaryotic communities in the sediments of the study areas showed obvious spatial heterogeneity. The sampling sequences divided the sample regions into three distinct clusters. Each geographic region had a unique community structure, although Proteobacteria, Bacteroidota, Desulfobacterota, Acidobacteriota, and Actinobacteriota all existed in these three branches. Canonical correspondence analysis demonstrated that prokaryotic diversity and community distribution were significantly correlated with the geographic location of sediment, seawater depth, and in particular, nutrient content(e.g., total phosphorus, total organic carbon and dissolved oxygen). Moreover, it was found for the first time that the metal ions obviously affected the composition and distribution of the prokaryotic community in this area. In general, this work provides new insights into the structural characteristics and driving factors of prokaryotic communities under the background of the ever-changing Changjiang River Estuary.
文摘Han River to Wei River Water Diversion Project in Shaanxi Province is an inter-basin water diversion project approved by the State Council in 2005,which is a key hydraulic project in the 12th Five-Year Plan of China.It is expected to solve water resources shortage in the Guanzhong area of Shaanxi Province,effectively curb the deterioration of ecological environment in Wei River and reduce environmental geological disasters in the Guanzhong area.It is a strategic project for optimal allocation of water resources by adjusting the distribution of water resources in Shaanxi Province and promoting the economic development of the Guanzhong-Tianshui Economic Zone.Implementation of the project is of great importance to the sustainable economic and social development of the Guanzhong area.The project crosses the Yangtze River and Yellow River basins and passes through the Qinling Mountain.The huge-scale project has a profound historic impact on the economic development in the region.
基金financially supported by the Natural Science Foundation of China(41941016,42072240,41830217)Ministry of Science and Technology of China(2019QZKK0901,2021FY100101)+2 种基金Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(GML2019ZD0201)China Geological Survey(DD20221630)Special Fund of the Institute of Geophysics,China Earthquake Administration(DQJB20B21).
文摘The Xianshuihe-Anninghe fault extends SE–S and constitutes the southeastern margin of the Tibetan Plateau.However,the Dadu River which is associated with the fault does not flow following the path,but makes a 90ºturn within a distance of 1 km at Shimian,heading east,and joins the Yangtze River,finally flowing into the East China Sea.Adjacent to the abrupt turn,a low and wide pass near the Daqiao reservoir at Mianning separates the N–S course of the Dadu River from the headwater of the Anning River which then flows south into the Yunnan Province along the Anninghe fault.Therefore,many previous studies assumed southward flow of the paleo-Dadu River from the Shimian to the Anning River.However,evidences for the capture of the integrated N–S paleo-Dadu-Anning River,its timing,and causes are still insufficient.This study explored the paleo-drainage pattern of the Dadu and Anning Rivers based on bulk mineral and geochemical analyses of the large quantities of fluvial/lacustrine sediments along the trunk of the Dadu and Anning Rivers.Similar with sands in the modern Dadu River,the Xigeda sediments also exhibit a granitoid affinity with the bulk major mineral compositions of quartz(>50%),anorthite(about 10%),orthoclase(about 5%),muscovite(about 5%),and clinochlore(about 4%).Correspondingly,bulk major elements show high SiO_(2),with all samples>60%,and some of them>70%,low TiO_(2)(≤0.75%),P_(2)O_(5)(≤0.55%),FeO*(≤5%),and relatively high CaO(1.02%–8.51%),Na_(2)O(1.60%–2.52%),and K_(2)O(2.17%–2.71%),with a uniform REE patterns.Therefore,synthesizing all these results indicate that these lacustrine sediments have similar material sources,which are mainly derived from its course in the Songpan-Ganzi flysch block,implying that the paleo-Dadu originally flowed southward into the Anning River and provided materials to the Xigeda ancient lake.The rearrangement of the paleo-Dadu River appears to be closely related to the locally focused uplift driven by strong activities of the XianshuiheXiaojiang fault system.
基金funded by the National Natural Science Foundation of China (NSFC) (No. 41530966)Key Project of the Ministry of Science and Technology of China (No. 2016YFA0600904)
文摘Diversion of the Yellow River is a unique geological event in offshore China,causing changes of the sedimentary environment in eastern China Seas.The last diversion took place in AD 1855,with the estuary diverted from the Yellow Sea into the Bohai Sea.The identification of the river diversion events in the shelf sediments would not only provide the definite ages for the sediments,but also give a clue for better understanding of the sedimentation in that area.In this study,210 Pb,grain size,geochemical element,and foraminiferal data in core H205 from the north Yellow Sea were systematically investigated.A high-resolution sedimentary record was established,which was coupled with the Yellow River diversion and runoff changes.The results show that the foraminiferal composition and foraminiferal abundance of the sediments from the north Yellow Sea had good response to the Yellow River diversion in 1855.Before the change,shallow water assemblages dominated the foraminifera,and the abundance of each foraminiferal species was very low.After the diversion event,the abundance of most foraminifera increased sharply,with a maximum increase of 16 times,and the assemblage was still dominated by shallow water species.Furthermore,the changes in foraminiferal abundance in the core sediments corresponded well with the discharge fluctuation of the Yellow River since 1855.When the Yellow River began entering the Bohai Sea,the Yellow River water,which is rich in nutrients,along with the coastal currents affected the north Yellow Sea,increased the primary productivity in the north Yellow Sea,which is the main reason for the abrupt increase and fluctuation of foraminiferal abundance in this area.At the meantime,the East Asian winter monsoon could also promote the development of nearshore foraminiferal species by enhancing the coastal currents.
基金Under the auspices of Natural Science Foundation of China(No.U2106209,42071126)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050202)International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)。
文摘Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.
文摘In this paper, according to the rule of unbalanced sediment transport and the analysis of field data, different water diversion schemes were theoretically studied, including the erosion and sedimentation trend as well as their impacts on the environment of the middle and lower reaches of the Hanjiang River. The results showed that the 95×10 8m 3 water diversion scheme will cause less erosion and water level decrease than the 15×10 8m 3 water diversion scheme. Using a water diversion scheme of 95×10 8m 3, the decrease of water quantity can impact the river hydrodynamic regime substantially and the environments of the middle and lower reaches of the Hanjiang River will be greatly affected. It is therefore necessary to develop new water resources or build projects to meet the need of the environment and the needs for navigation.
文摘The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funded construction of the West Bay Sediment Diversion Project (WBSD) on the west bank of the Mississippi River for the purpose of coastal restoration. A multi-tiered sediment study for the WBSD was conducted to determine impacts to the adjacent navigation channel and to the Pilottown Anchorage Area (PAA). One tier of the study is the implementation of HEC-6T, a one-dimensional (1-D) sediment model, to evaluate the regional impacts of the WBSD. The HEC-6T model results shows the long-term channel changes associated with the WBSD to be increasing shoaling in the adjacent areas on the order of 10% - 20%, as compared to the no WBSD condition. However, it is extremely difficult to isolate the impacts associated with a single diversion due to multiple diversions in the region. From a holistic vantage point, the 1-D model shows the necessity to examine, on a regional scale, the lower Mississippi River as a single congruent system on a regional scale.
基金the financial and logistical support of the Ity Mining Company(SMI).
文摘On the Cavally River, located on the border between C?te d’Ivoire and Liberia, several hydraulic structures such as bridges and diversion channels are planned to be made in recent years in the operating perimeter of the Ity mining company. A 1D-2D hydraulic model was developed to design a diversion channel to cut a meander of the Cavally River in order to ensure hydraulic operation similar to the initial conditions of the river (water levels, flow and velocities). This model was designed with a flow rate of 240 m3/s and a Manning coefficient of 0.052 m1/3·s-1 for the minor bed and 0.06 m1/3·s-1 for the major bed. The results from the hydraulic model show that the hydraulic conditions (water levels, velocities) in the channel before and after the diversion remain almost like those of the Cavally River.
基金Under the auspices of the National Natural Science Foundation of China(No.41871089)the Basic Scientific Fund for National Public Research Institutes of China(No.2018Q07)+3 种基金the National Natural Science Foundation of China(No.41971119)the Natural Science Foundation of Shandong Province(No.ZR2019MD024)Shandong Province University Youth Innovation Team(No.2019KJD010)the Open Research Fund Program of Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta(No.2019KFJJ01).
文摘Multiple natural and human factors in estuarine wetlands result in complicated land surface characteristics with distinct spatial and temporal heterogeneities,thereby contributing to the difficulty in identifying spatiotemporal variations and influencing factors of plant diversity.A unique estuarine wetland gradient system(UEWGS)consisting of soil,vegetation,heat,distance,landscape,and anthropogenic gradients was established based on the ecological features of estuarine wetland through remote sensing and field investigation methods.It resolved the complicated land surface characteristics,covered all aspects of factors influencing plant diversity,and possessed distinct spatiotemporal heterogeneities.The Yellow River Delta,the largest estuarine wetland in the northern China,was selected as the study area to demonstrate UEWGS in four seasons in 2017.A total of 123 species were recorded with considerable seasonal difference.Phragmites australis,Suaeda salsa,and Tamarix chinensis were the dominant species,and crop species also played important roles.In single effect,all aspects of gradients exerted significant influences,yet only vegetation gradient possessed significant influences in all seasons.In comprehensive effect,soil,vegetation,heat,and distance gradients showed significant gross influences.Moisture content in soil gradient and net primary productivity in vegetation gradient possessed significant net influences in all seasons and can be considered as the main driving factor and indicator,respectively,of plant diversity.The results validated the significance of UEWGS in revealing the plant diversity spatiotemporal characteristics and influencing factors,and UEWGS possessed universal applicability in the spatiotemporal analysis of plant diversity in estuarine areas.
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (Nos. 40776012, 40976056)the Special Funds of the State Key Laboratory of Estuarine and Coastal Research (No. 2008KYYW03)
文摘We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.
基金Supported by Open Project Program of Key Laboratory of Freshwater Aquatic Biotechnology and Breeding,Ministry of Agriculture,Heilongjiang Fisheries Research Institute,Chinese Academy of Fishery Sciences(FBB2016-01)
文摘Chinese mitten crab (Eriocheir sinensis) is an indigenous and ecologically and economically important species in the Liao River area, but its identification and genetic diversity remain poorly understood. To evaluate the germplasm resources of this species, samples were collected from these locations: four sub-populations from the Liao River area and one population from the Yangtze River area; one primer was used to distinguish between the Liao River and the Yangtze River crabs. Thirteen loci were used for crab genetic diversity analysis, and basic statistics showed that the collecting samples were purebred in the Liao River area. The average observed heterozygosity (H0) of the Liao River population was 0.5931, and the expected heterozygosity (He) was 0.8064. The polymorphism information content (PIC) was 0.7753, which showed that the Liao River population had high genetic diversity. The genetic differentiation index (FST) averaged 0.0342, meaning a low degree of differentiation; cluster analysis indicated that Hujia (HJ), Xinli (XL) and Chenjia (CJ) sub-populations were allocated to the same cluster, while Baqiangzi (BQZ) sub-population was isolated. In summary, these data demonstrated that the crabs in the Liao River had high genetic diversity, but low genetic differentiation. Thus, the Liao River population had the potential for breeding selection. Furthermore, this study also provided valuable genetic information for the conservation of Chinese mitten crab.
基金Project (No. 30670014) supported by the National Natural Science Foundation of China
文摘Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then the co-relationship between genus species of soil dematiaceous hyphomycetes and ecosystem-types was analyzed. The results show that the amount and species distribution of soil dematiaceous hyphomycetes had an obvious variability in different ecosystem-types, and that the dominant genus species varied in the eight ecosystem-types studied, with Cladosporium being the dominant genus in seven of the eight ecosystem-types except wetland. The index of species diversity varied in different ecosystem-types. The niche breadth analysis showed that Cladosporium had the highest niche breadth and distributed in all ecosystem-types, while the genera with a narrow niche breadth distributed only in a few ecosystem-types. The results of niche overlap index analysis indicated that Stachybotrys and Torula, Doratomyces and Scolecobasidium, Cladosporium and Chrysosporium had a higher niche overlap, whereas Arthrinium and Gliomastix, Phialophora and Doratomyces, Oidiodendron and Ulocladium had no niche overlap.
基金supported by the China Meteorological Data Sharing Service System,the Bureau of Hydrology,and Water Resources of Sichuan Province,China
文摘The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.
基金supported by the Key Project of National Key Research and Development Plans(Grant No.2016YFC0503106)
文摘It remains unclear whether the elevational diversity gradients observed in seed plants across different taxonomic levels (family, genus, and species) are driven by the same macro-environmental variables. In this study, seed plant elevational distribution data from the Lancang River Nature Reserve (Yunnan, China) were used to investigate spatial patterns in diversity and their environ- mental correlates, comparing across taxonomic levels. Environmental variables included energy availability, climate seasonality and environmental heterogeneity. All taxonomic levels (family, genus, and species) were found to have strong elevational richness gradients, with the strength of the gradient weakening at higher taxonomic levels. Spatial patterns in richness were explained by a combination of contemporary environmental variables and the mid-domain effect at all taxonomic levels. The independent effects of temperature- and precipitation-related variables were similar in explaining geographical patterns of family, genus and species richness. Energy, seasonality and heterogeneity variables influenced seed plant spatial richness at different taxonomic levels in similar ways.
基金Supported by the Joint Funds for Fostering Talents of National Natural Science Foundation of China and Henan Province(U1304324)
文摘To provide accurate base data about the genetic sourees of Yellow River carps, the genetic diversity in a^ficially bred population and wild population of Yellow River carps from Henan Province was analyzed with mierosatellite markers. The results showed that 16 alleles were detected at six microsateUite loci in each population. The average effective number of alleles (Ne) was 2. 350 in artificially bred population and 2. 085 in wild population. The observed heterozygosity (Ho) of artificially bred population, wild population and mixed population was 0. 614, 0. 576 and 0. 601 ; and the unbiased expected heterozygesity ( He ) was 0. 569, 0.535 and 0.559 ; and the polymorphism infonnatian content (PlC) was 0.474, 0.428 and 0.468, respectively. The PIC of the six loci ranged from 0.304 to 0. 864. The analysis of the genetic differentiation for the six microsatellitc loci in the two populations showed that the genetic differentiation coefficient ( F,, ) at only one microsatellite locus HLJ483 was greater than 0.05, and that at five rnicrosatellite loci were less than 0.05, which was consistent with the standard of non- genetic differentiation between populations (F,, = 0 -0.05). The average F,, at the six loci was 0.02, and the gene flow value (Nm) at all loci was greater than 1 and the average of Nm was 12.202. The results indicate that there is relatively abundant genetic diversity in Yellow River carps.
基金supported by National Natural Science Foundation of China (Grant No.30770329,No.40971034,No.30800154)China Postdoctoral Science Fund (Grant No.20080430794)
文摘Surface snow samples of different altitudes and snow pit samples were collected from Glacier No. 1 at the Urumqi River Head, Tianshan. Denaturing gradient gel electrophoresis (DGGE) was used to examine the diversity and temporal-spatial characteristics of eukaryotic microorganisms with different altitudes and depths. Results show that the eukaryotic microorganisms belong to four kingdoms--Viridiplantae, Fungi, Amoebozoa, and Alveolata. Among them, algae (especially Chlamydomonadales) were the dominant group. The diversity of eukaryotic microorganisms was negatively correlated with altitude and accumulation time, but positively correlated with 8180 values. These results indicate that temperature is the main factor for the temporal-spatial change of eukaryotic microorganisms, and the diversity of eukaryotic microorganisms could be an index for climate and environmental change.