期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Spatio-temporal Variation Characteristics of Extreme Climate Events and Their Teleconnections to Large-scale Ocean-atmospheric Circulation Patterns in Huaihe River Basin,China During 1959–2019
1
作者 YAO Tian ZHAO Qiang +6 位作者 WU Chuanhao HU Xiaonong XIA Chuan'an WANG Xuan SANG Guoqiang LIU Jian WANG Haijun 《Chinese Geographical Science》 SCIE CSCD 2024年第1期118-134,共17页
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of... Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB. 展开更多
关键词 extreme climate indices Sen’s slope variation mutation test atmospheric circulation indices Pearson’s correlation analysis huaihe river basin(HRB) China
下载PDF
The Analysis on the Temporal and Spatial Variation of Strong Precipitation Caused Flood and Agricultural Disaster Loss in Huaihe River Basin of Anhui Province during Meiyu Period of 2007 被引量:1
2
作者 YU Jia-cheng1,WU Chang-chun1,HUANG Xiao-yan1,HE Yong-qing1,YU Yang2,WANG Sheng2,GUO Xiu-yun2,WANG Hua3 1.Anhui Agricultural University,Hefei 230036,China 2.Anhui Meteorological Bureau,Hefei 230061,China 3.Anhui Civil Affairs Bureau,Hefei 230061,China 《Meteorological and Environmental Research》 CAS 2011年第7期87-90,共4页
[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]... [Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed "three-peak" trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin. 展开更多
关键词 huaihe river basin of Anhui Province Meiyu period of 2007 Strong precipitation caused flood Temporal and spatial distribution Agricultural disaster loss Characteristic analysis China
下载PDF
Effect and Risk Assessment of Animal Manure Pollution on Huaihe River Basin, China
3
作者 WANG Youbao PAN Fanghui +4 位作者 CHANG Jiayue WU Rongkang TIBAMBA Matthew LU Xuecheng ZHANG Xinxi 《Chinese Geographical Science》 SCIE CSCD 2021年第4期751-764,共14页
Currently the deteriorated water quality for Huaihe River Basin(HRB) in China was still serious because of the negative influence multiple pollution sources including animal manure. However, little attention was paid ... Currently the deteriorated water quality for Huaihe River Basin(HRB) in China was still serious because of the negative influence multiple pollution sources including animal manure. However, little attention was paid to the potential risk of animal manure for farmland and water quality of HRB. This study was quantified and forecasted animal manure risk and its spatiotemporal variations in HRB from 2008 to 2018, through pollution discharge coefficient method and pollution load calculation, combined with kriging interpolation method of ArcGIS technology, based on statistics principle. All the data were originated from livestock and poultry breeding in HRB from 2008 to 2018. The future risk of farmland and water environment in HRB was further forecasted. The results indicated that the livestock and poultry manure has become a key pollution source causing a negative influence on farmland and water quality owing to a large amount of animal manure production without efficient recycle utilization. The chemical oxygen demand(COD) and total nitrogen(TN) discharge of animal manure in HRB almost accounted for 17.00% and 39.00% of the whole COD and TN discharge in China. The diffusion concentration of TN and TP in those regions of Shangqiu, Zhoukou, Heze, Zhumadian, Luohe, Jining, Xuchang,Kaifeng, Taian and Zhengzhou of HRB has exceeded the threshold value 10.00 mg/L of TN and 0.08 mg/L of TP, causing water eutrophication and cancer villages. The assessment of farmland and water quality risk revealed that Zhumadian, Zhoukou, Shangqiu, Taian, Jining, Heze, Linyi and Rizhao belonged to high risk areas in HRB, which were still obtained high farmland and water quality risk index in 2030. The results provided insight into an important significance of sustainable balance of livestock and poultry development and ecosystem in HRB. 展开更多
关键词 huaihe river basin(HRB) China animal manure farmland load diffusion concentration risk assessment
下载PDF
Spatio-temporal accuracy evaluation of MSWEP daily precipitation over the Huaihe River Basin,China:A comparison study with representative satellite-and reanalysis-based products 被引量:1
4
作者 LI Lingjie WANG Yintang +4 位作者 WANG Leizhi HU Qingfang ZHU Zhenduo LI Liping LI Chengxi 《Journal of Geographical Sciences》 SCIE CSCD 2022年第11期2271-2290,共20页
Multi-source weighted-ensemble precipitation(MSWEP)is one of the most popular merged global precipitation products with long-term spanning and high spatial resolution.While various studies have acknowledged its abilit... Multi-source weighted-ensemble precipitation(MSWEP)is one of the most popular merged global precipitation products with long-term spanning and high spatial resolution.While various studies have acknowledged its ability to accurately estimate precipitation in terms of temporal dynamics,its performance regarding spatial pattern and extreme rainfall is overlooked.To fill this knowledge gap,the daily precipitation of two versions of MSWEP(MSWEP V2.1&V2.2)are compared with that of three representative satellite-and reanalysis-based products,namely the Tropical Rainfall Measuring Mission(TRMM 3B42 V7),the climate prediction center morphing technique satellite-gauge merged product(CMORPH BLD),and the fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts(ERA5).The comparison is made according to the dense daily rainfall observations from 539 rain gauges over the Huaihe River Basin in China during 2006–2015.The results show that MSWEP V2.1,MSWEP V2.2 and CMORPH BLD have better performance on temporal accuracy of precipitation estimation,followed by ERA5 and TRMM 3B42V7.MSWEPs yield the most even spatial distribution across the basin since it takes full advantage of the multi datasets.As the weighted-ensemble method is independently carried out on each grid in MSWEPs,the spatial distribution of local precipitation is changed by different source data,which results in that MSWEPs perform worse than CMORPH BLD in terms of the representation of precipitation spatial pattern.In addition,the capability of MSWEPs to describe the spatial structure in the rainy season is lower than that in the dry season.Strong precipitation(≥100 mm/d)events are better represented in TRMM 3B42 V7 products than in MSWEPs.Finally,based on the comparison results,we suggest to improve the merging algorithm of MSWEP by considering the precipitation spatial self-correlation and adjusting the merging weights based on the performance of the source datasets under different precipitation intensities. 展开更多
关键词 MSWEP temporal accuracy spatial pattern extreme precipitation huaihe river basin
原文传递
Effects of Rainfall and Underlying Surface on Flood Recession——The Upper Huaihe River Basin Case
5
作者 Yashan Cheng Yanfang Sang +2 位作者 Zhonggen Wang Yuhan Guo Yin Tang 《International Journal of Disaster Risk Science》 SCIE CSCD 2021年第1期111-120,共10页
The effects of rainfall and underlying surface conditions on flood recession processes are a critical issue for flood risk reduction and water use in a region.In this article,we examined and clarified the issue in the... The effects of rainfall and underlying surface conditions on flood recession processes are a critical issue for flood risk reduction and water use in a region.In this article,we examined and clarified the issue in the upper Huaihe River Basin where flood disasters frequently occur.Data on 58 rainstorms and flooding events at eight watersheds during 2006–2015 were collected.An exponential equation(with a key flood recession coefficient)was used to fit the flood recession processes,and their correlations with six potential causal factors—decrease rate of rainfall intensity,distance from the storm center to the outlet of the basin,basin area,basin shape coefficient,basin average slope,and basin relief amplitude—were analyzed by the Spearman correlation test and the Kendall tau test.Our results show that 95%of the total flood recession events could be well fitted with the coefficient of determination(R2)values higher than 0.75.When the decrease rate of rainfall intensity(Vi)is smaller than 0.2 mm/h2,rainfall conditions more significantly control the flood recession process;when Vi is greater than 0.2 mm/h2,underlying surface conditions dominate.The result of backward elimination shows that when Vi takes the values of0.2–0.5 mm/h2 and is greater than 0.5 mm/h2,the flood recession process is primarily influenced by the basin’s average slope and basin area,respectively.The other three factors,however,indicate weak effects in the study area. 展开更多
关键词 Backward elimination China Correlation test Flood recession huaihe river basin Rainfall intensity
原文传递
Measurement of HONO flux using the aerodynamic gradient method over an agricultural field in the Huaihe River Basin,China
6
作者 Fanhao Meng Min Qin +11 位作者 Wu Fang Jun Duan Ke Tang Helu Zhang Dou Shao Zhitang Liao Yan Feng Yong Huang Ting Ni Pinhua Xie Jianguo Liu Wenqing Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第4期297-307,共11页
To investigate nitrous acid(HONO)levels and potential HONO sources above crop rotation fields.The HONO fluxes were measured by the aerodynamic gradient(AG)method from 14 December 2019 to 2 January 2020 over an agricul... To investigate nitrous acid(HONO)levels and potential HONO sources above crop rotation fields.The HONO fluxes were measured by the aerodynamic gradient(AG)method from 14 December 2019 to 2 January 2020 over an agricultural field in the Huaihe River Basin.The ambient HONO levels were measured at two different heights(0.15 and 1.5 m),showing a typical diurnal cycle with low daytime levels and high nighttime levels.The upward HONO fluxes were mostly observed during the day,whereas deposition dominated at night.The diurnal variation of HONO flux followed solar radiation,with a noontime maximum of 0.2 nmol/(m^(2)·sec).The average upward HONO flux of 0.06±0.17 nmol/(m^(2)·sec)indicated that the agricultural field was a net source for atmospheric HONO.The higher HONO/NO_(2)ratio and NO_(2)-to-HONO conversion rate close to the surface suggested that nocturnal HONO was formed and released near the ground.The unknown HONO source was derived from the daytime HONO budget analysis,with an average strength of 0.31 ppbV/hr at noontime.The surface HONO flux,which was highly correlated with the photolysis frequency J(NO_(2))(R^(2)=0.925)and the product of J(NO_(2))×NO_(2)(R^(2)=0.840),accounted for∼23%of unknown daytime HONO source.The significant correlation between HONO fluxes and J(NO_(2))suggests a light-driven HONO formation mechanism responsible for the surface HONO flux during daytime. 展开更多
关键词 Aerodynamic gradient method HONO flux huaihe river basin Agricultural field
原文传递
Source apportionment of river water pollution in a typical agricultural city of Anhui Province, eastern China using multivariate statistical techniques with APCS– MLR 被引量:1
7
作者 Kai Chen Qi-meng Liu +2 位作者 Wei-hua Peng Yu Liu Zi-tao Wang 《Water Science and Engineering》 EI CAS CSCD 2023年第2期165-174,共10页
The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential po... The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F-, Cl-, SO42-, Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score-multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F-), ρ(SO42-), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area. 展开更多
关键词 Surface water Water quality Source apportionment APCS-MLR model huaihe river basin
下载PDF
Major Scientific Achievements of the First China–Japan Cooperative GAME/HUBEX Experiment: A Historical Review
8
作者 Yihui DING Wen HU +1 位作者 Yong HUANG Fengjiao CHEN 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期659-674,共16页
In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and ... In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and Water Cycle Experiment/Asian Monsoon Experiment/Huaihe River Basin Energy and Water Cycle Experiment) in the Huaihe River basin, Anhui Province of China. The main objective of this field experiment(HUBEX)was to investigate the multiple-scale structure characteristics, life cycles, and genesis and development mechanisms of the Meiyu system in East Asia as well as the cause of related flooding disasters. It was a joint China-Japan cooperative meteorological and hydrological observation experiment. On the basis of intensive observations, scientists from the two countries conducted follow-up investigations through collating and compiling data and performing scientific analysis during the following five years. It can be concluded that the HUBEX project has yielded comprehensive and remarkable achievements. This paper introduces the major scientific results derived from this field experiment and the ensuing investigations, and reassesses their merits and shortages for the purpose of providing useful experience and proposing new research targets as well as prospects for the initiation of a new joint scientific Meiyu experiment in the middle and lower Yangtze River basin. 展开更多
关键词 MEIYU huaihe river basin energy and water cycle meteorological and hydrological observations huaihe river basin Energy and Water Cycle Experiment(HUBEX)/Global Energy and Water Cycle Experiment(GEWEX)/Asian Monsoon Experiment(GAME)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部