The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne...The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.展开更多
On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonio...On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching 'decisi"ofi-makifig support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the -integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.展开更多
To meet the increasing :need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distributi...To meet the increasing :need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC) of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the :river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.展开更多
由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short T...由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short Term Memory,FE-NGO-LSTM)混合模型。首先对水质数据集进行缺失值补齐、特征筛选与特征多项式构造,然后基于NGO-LSTM模型优化模型参数,提升预测性能;对不同多项式阶数下的特征预测效果进行分析之后,将该模型与基于灰狼优化算法、鲸鱼优化算法及粒子群优化算法的LSTM模型进行对比;最后,在太湖流域东苕溪城南监测断面对该模型进行了验证,计算FE-NGO-LSTM模型预见期为4,8,12,16,20,24 h的预测结果。试验结果显示:当多项式阶数为2阶时,模型预测效果最好,FE-NGO-LSTM模型相比基于其他优化算法的LSTM模型,平均绝对误差、均方误差、均方根误差分别至少降低9.0%,12.9%及6.3%,且随着预见期的增加,预测误差仍在可接受范围内,说明FE-NGO-LSTM模型在预测溶解氧浓度时具有一定优势与泛化性。展开更多
Climate change and human activity can cause remarkable hydrological variation.Traits of hydrological series such as runoff before and after the change points could be significantly different,so the calculation of inst...Climate change and human activity can cause remarkable hydrological variation.Traits of hydrological series such as runoff before and after the change points could be significantly different,so the calculation of instream ecological water requirements(EWRs)is confronted with more challenges.Taking the Xitiaoxi River(XTXR)in the upper reach of the Taihu Lake Basin as an example,this paper investigates the calculation of EWRs using the range of variability approach(RVA)under changing environment.The change point diagnosis of the natural and observed runoff series are conducted for XTXR.Then,differences in the hydrological alternation indicators and instream EWRs processes obtained from various daily runoff series are compared.It was found that the natural and observed annual runoff series in XTXR from 1957 to 2018 both show significant variations,and the change points are in 2007 and 1999 respectively.If runoff data before the change points or all runoff data are used,the instream EWRs obtained from natural runoff are significantly lower than those obtained from the observed runoff.At the monthly time step,EWRs differences within a year mainly occurred from May to August.Also,calculation results of the instream EWRs are strongly related to the selected period of runoff series.The EWRs obtained using runoff series after the change points have rather acute fluctuation within a year.Therefore,when the RVA method is used under changing environment,the instream EWRs should be prudently determined by comparing different calculation results on the basis of river runoff restoration and variability analysis.To a certain extent,this paper enriches our understanding about the hydrological method for EWRs estimation,and proposes new ideas for future research on EWRs.展开更多
基金Under the auspices of Special Fund for Scientific Research in the Public Interestgranted by Ministry of Water Resources(No.2012010072,200701024)+3 种基金Key Program of National Natural Science Foundation of China(No.40730635)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2011491111)Research Foundation of Nanjing University of Information Science and Technology(No.20100406)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.
基金supported by the Innovation Programmes of the Ministry of Water Resources (Grant No. SCXC2002-09)
文摘On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching 'decisi"ofi-makifig support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the -integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)the National Natural Science Foundation of China (Grant No. 51009062)the Special Fund of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009586812)
文摘To meet the increasing :need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC) of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the :river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.
文摘由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short Term Memory,FE-NGO-LSTM)混合模型。首先对水质数据集进行缺失值补齐、特征筛选与特征多项式构造,然后基于NGO-LSTM模型优化模型参数,提升预测性能;对不同多项式阶数下的特征预测效果进行分析之后,将该模型与基于灰狼优化算法、鲸鱼优化算法及粒子群优化算法的LSTM模型进行对比;最后,在太湖流域东苕溪城南监测断面对该模型进行了验证,计算FE-NGO-LSTM模型预见期为4,8,12,16,20,24 h的预测结果。试验结果显示:当多项式阶数为2阶时,模型预测效果最好,FE-NGO-LSTM模型相比基于其他优化算法的LSTM模型,平均绝对误差、均方误差、均方根误差分别至少降低9.0%,12.9%及6.3%,且随着预见期的增加,预测误差仍在可接受范围内,说明FE-NGO-LSTM模型在预测溶解氧浓度时具有一定优势与泛化性。
基金National Key Research and Development Program of China,No.2018YFC1508204Special Program for Public Welfare Industrial Scientific Research of the Ministry of Water Resources,No.201401015,No.201501014National Natural Science Foundation of China,No.51509157。
文摘Climate change and human activity can cause remarkable hydrological variation.Traits of hydrological series such as runoff before and after the change points could be significantly different,so the calculation of instream ecological water requirements(EWRs)is confronted with more challenges.Taking the Xitiaoxi River(XTXR)in the upper reach of the Taihu Lake Basin as an example,this paper investigates the calculation of EWRs using the range of variability approach(RVA)under changing environment.The change point diagnosis of the natural and observed runoff series are conducted for XTXR.Then,differences in the hydrological alternation indicators and instream EWRs processes obtained from various daily runoff series are compared.It was found that the natural and observed annual runoff series in XTXR from 1957 to 2018 both show significant variations,and the change points are in 2007 and 1999 respectively.If runoff data before the change points or all runoff data are used,the instream EWRs obtained from natural runoff are significantly lower than those obtained from the observed runoff.At the monthly time step,EWRs differences within a year mainly occurred from May to August.Also,calculation results of the instream EWRs are strongly related to the selected period of runoff series.The EWRs obtained using runoff series after the change points have rather acute fluctuation within a year.Therefore,when the RVA method is used under changing environment,the instream EWRs should be prudently determined by comparing different calculation results on the basis of river runoff restoration and variability analysis.To a certain extent,this paper enriches our understanding about the hydrological method for EWRs estimation,and proposes new ideas for future research on EWRs.