期刊文献+
共找到1,611篇文章
< 1 2 81 >
每页显示 20 50 100
Assessing the Performance of CMIP6 Models in Simulating Droughts across Global Drylands 被引量:1
1
作者 Xiaojing YU Lixia ZHANG +1 位作者 Tianjun ZHOU Jianghua ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期193-208,共16页
Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the curr... Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs. 展开更多
关键词 DROUGHTS hydrothermal conditions drylandS CMIP6 model evaluation
下载PDF
The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number 被引量:1
2
作者 Yingxia Dou Hubing Zhao +4 位作者 Huimin Yang Tao Wang Guanfei Liu Zhaohui Wang Sukhdev Malhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期836-848,共13页
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components... Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK. 展开更多
关键词 dryland winter wheat plastic mulch spike number straw mulch
下载PDF
Prevalence of vegetation browning in China’s drylands under climate change 被引量:1
3
作者 Li Fu Guolong Zhang +3 位作者 Jianping Huang Ming Peng Lei Ding Dongliang Han 《Geography and Sustainability》 CSCD 2024年第3期405-414,共10页
Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning ... Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs. 展开更多
关键词 China’s drylands Ecological restoration programs Climate change Greening to browning reversal BFAST
下载PDF
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields 被引量:1
4
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
A New Merged Product Reveals Precipitation Features over Drylands in China
5
作者 Min LUO Yuzhi LIU +5 位作者 Jie GAO Run LUO Jinxia ZHANG Ziyuan TAN Siyu CHEN Khan ALAM 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期2079-2091,共13页
Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with ... Due to the considerable uncertainties inherent in the datasets describing the spatiotemporal distributions of precipitation in the drylands of China,this study presents a new merged monthly precipitation product with a spatial resolution of approximately 0.2°×0.2°during 1980–2019.The newly developed precipitation product was validated at different temporal scales(e.g.,monthly,seasonally,and annually).The results show that the new product consistently aligns with the spatiotemporal distributions reported by the Chinese Meteorological Administration Land Data Assimilation System(CLDAS)product and Multi-Source Weighted Ensemble Precipitation(MSWEP).The merged product exhibits exceptional quality in describing the drylands of China,with a bias of–2.19 mm month^(–1)relative to MSWEP.In addition,the annual trend of the merged product(0.09 mm month^(–1)yr^(−1))also closely aligns with that of the MSWEP(0.11 mm month^(–1)yr^(−1))during 1980–2019.The increasing trend indicates that the water cycle and wetting process intensified in the drylands of China during this period.In particular,there was an increase in wetting during the period from 2001–2019.Generally,the merged product exhibits potential value for improving our understanding of the climate and water cycle in the drylands of China. 展开更多
关键词 PRECIPITATION merged dataset drylandS water cycle
下载PDF
Short lifespan and ‘prime period’ of carbon sequestration call for multi-ages in dryland tree plantations
6
作者 Chongyang Xu Xiuchen Wu +4 位作者 Yuhong Tian Liang Shi Yang Qi Jingjing Zhang Hongyan Liu 《Forest Ecosystems》 SCIE CSCD 2024年第5期670-676,共7页
Enhancing forest cover is important for effective climate change mitigation.Studies suggest that drylands are promising areas for expanding forests,but conflicts arise with increased forest area and water consumption.... Enhancing forest cover is important for effective climate change mitigation.Studies suggest that drylands are promising areas for expanding forests,but conflicts arise with increased forest area and water consumption.Recent tree mortality in drylands raises concerns about carbon sequestration potential in tree plantations.Using Chinese dryland tree plantations as an example,we compared their growth with natural forests.Our results suggested plantation trees grew 1.6–2.1 times faster in juvenile phases,significantly shortening time to maturity(13.5 vs.30 years)compared to natural forests,potentially stemming from simple plantation age structures.Different from natural forests,74%of trees in plantations faced growth decline,indicating a short“prime period”for carbon sequestration and even a short lifespan.Additionally,a negative relationship between evapotranspiration and tree growth was observed in tree plantations since maturity,leading to high sensitivities of trees to vapor pressure deficit and soil water.However,this was not observed in natural forests.To address this,we suggest afforestation in drylands should consider complex age structures,ensuring a longer prime period for carbon sequestration and life expectancy in tree plantations. 展开更多
关键词 Tree growth drylandS Tree plantations Carbon sequestration LIFESPAN
下载PDF
The ABA synthesis enzyme allele OsNCED2^(T)promotes dryland adaptation in upland rice
7
作者 Liyu Huang Yachong Bao +9 位作者 Shiwen Qin Min Ning Qinyan Li Qingmao Li Shilai Zhang Guangfu Huang Jing Zhang Wensheng Wang Binying Fu Fengyi Hu 《The Crop Journal》 SCIE CSCD 2024年第1期68-78,共11页
Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the O... Upland rice shows dryland adaptation in the form of a deeper and denser root system and greater drought resistance than its counterpart,irrigated rice.Our previous study revealed a difference in the frequency of the OsNCED2 gene between upland and irrigated populations.A nonsynonymous mutation(C to T,from irrigated to upland rice)may have led to functional variation fixed by artificial selection,but the exact biological function in dryland adaptation is unclear.In this study,transgenic and association analysis indicated that the domesticated fixed mutation caused functional variation in OsNCED2,increasing ABA levels,root development,and drought tolerance in upland rice under dryland conditions.OsNCED2-overexpressing rice showed increased reactive oxygen species-scavenging abilities and transcription levels of many genes functioning in stress response and development that may regulate root development and drought tolerance.OsNCED2^(T)-NILs showed a denser root system and drought resistance,promoting the yield of rice under dryland conditions.OsNCED2^(T)may confer dryland adaptation in upland rice and may find use in breeding dryland-adapted,water-saving rice. 展开更多
关键词 Upland rice dryland adaptation ABA Root development Drought tolerance
下载PDF
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
8
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Heterotrophic ammonia-oxidizing bacteria Rhizosphere soil nitrification CYTOKININ MAIZE dryland agriculture
下载PDF
Sorghum Productivity and Its Farming Feasibility in Dryland Agriculture:Genotypic and Planting Distance Insights
9
作者 Kristamtini Sugeng Widodo +12 位作者 Heni Purwaningsih Arlyna Budi Pustika Setyorini Widyayanti Arif Muazam Arini Putri Hanifa Joko Triastono Dewi Sahara Heni Sulistyawati Purwaning Rahayu Pandu Laksono Diah Arina Fahmi Sutardi Joko Pramono Rachmiwati Yusuf 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期1007-1021,共15页
Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still... Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1. 展开更多
关键词 SORGHUM dryland agriculture planting space VARIETY local Gunungkidul
下载PDF
Optimizing Sorghum Productivity Using Balanced Fertilizers on Dryland
10
作者 Samijan Samijan Endah Nurwahyuni +7 位作者 Sri Minarsih Agus Supriyo Sodiq Jauhari Yulis Hindarwati Meinarti Norma Setiapermas Raden Heru Praptana Endah Winarni Vina Eka Aristya 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1403-1420,共18页
Sorghum is thefifth most required cereal crop globally.Sorghum bicolor has the advantage of being adaptive to both lowland and dryland,with drought-tolerant and wide adaptability.The low nutrient availability in drylan... Sorghum is thefifth most required cereal crop globally.Sorghum bicolor has the advantage of being adaptive to both lowland and dryland,with drought-tolerant and wide adaptability.The low nutrient availability in dryland requires additional effective fertilizers to increase sorghum productivity.The research aimed to assess the appli-cation of organic,inorganic,and biofertilizers for sorghum productivity on dryland.Research in Central Java,Indonesia as dryland sorghum areas,from November 2022 to February 2023.The experiment cooperates with the farmers in a split-plot design,the main plot was two varieties and subplots of four fertilizers.The enhanced sorghum yield(21.38%–36.06%)with combined fertilizer was greater than the existing fertilization.Nutrient con-trol does not rely on inorganic fertilizers but also on applying biofertilizers.The sorghum farming economic value farming indicated that combinations of fertilizer treatments and varieties provide benefits of USD 929.81–1955.81 with a revenue-cost ratio(R/C)value>1.Sorghum is an essential food commodity that faces the threat of the global crisis and an unfavorable environment.This study indicated balanced fertilizers could provide suffi-cient nutrients to the soil and increase nutrient absorption availability for sorghum growth and productivity.Balanced fertilization increases the uptake of N,P,and K nutrients correlates with an increase in yield of 21.38%–36.06%. 展开更多
关键词 BIOFERTILIZER dryland adaptability economic value SORGHUM potential yield
下载PDF
Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China
11
作者 Wenjie Yang Jie Yu +9 位作者 Yanhang Li Bingli Jia Longgang Jiang Aijing Yuan Yue Ma Ming Huang Hanbing Cao Jinshan Liu Weihong Qiu Zhaohui Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2421-2433,共13页
The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status... The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production. 展开更多
关键词 fertilization method dryland wheat soil nutrient critical value soil nitrogen topsoil nutrients
下载PDF
Characteristics and drivers of the soil multifunctionality under different land use and land cover types in the drylands of China
12
作者 SONG Boyi ZHANG Shihang +6 位作者 LU Yongxing GUO Hao GUO Xing WANG Mingming ZHANG Yuanming ZHOU Xiaobing ZHUANG Weiwei 《Regional Sustainability》 2024年第3期99-110,共12页
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e... The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change. 展开更多
关键词 Soil multifunctionality(SMF) Land use and land cover(LULC)changes Structural equation modeling(SEM) Climate change dryland ecosystems
下载PDF
减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响
13
作者 张军 胡川 +6 位作者 周起晖 任开明 董誓言 刘傲寒 吴金芝 黄明 李友军 《作物学报》 CAS 北大核心 2025年第1期207-220,共14页
探究减氮及有机肥替代对旱地冬小麦产量形成和经济效益的影响,为实施化肥减量和有机肥替代提供理论和技术依据。2021-2023年度,基于2019年开始设置在黄土高原和黄淮海平原交汇处典型旱地冬小麦产区(河南洛宁和河南孟津)的定位试验,研究... 探究减氮及有机肥替代对旱地冬小麦产量形成和经济效益的影响,为实施化肥减量和有机肥替代提供理论和技术依据。2021-2023年度,基于2019年开始设置在黄土高原和黄淮海平原交汇处典型旱地冬小麦产区(河南洛宁和河南孟津)的定位试验,研究了冬小麦干物质积累转运分配特性、氮肥干物质生产效率、产量及其构成要素和经济效益。试验设置不施氮肥(NN)、农户施氮(FN)、基于FN减氮20%(RN)和RN基础上20%氮肥用有机肥替代(OSN)4个处理。结果表明:(1)与FN相比,RN处理降低了小麦拔节期、开花期和成熟期的干物质积累量、花前干物质转运量以及成熟期茎鞘、穂轴+颖壳和籽粒的干物质分配量,但对籽粒产量无显著影响。(2)与FN和RN相比, OSN处理提高了各生育阶段的氮肥干物质生产效率,从而增加了拔节期、开花期、成熟期的干物质积累量,而且提高了花前干物质转运量、花后干物质积累量、花后干物质积累量对籽粒的贡献率,进而使成熟期地上部各器官的干物质分配量均得到显著提高,最终使籽粒产量分别显著增加15.03%和17.12%,经济效益增加3.84%和4.23%。(3)小麦产量与花前干物质转运量、花后干物质积累量和花后干物质积累量对籽粒的贡献率呈极显著正相关,与花前干物质转运量对籽粒的贡献率呈极显著负相关。综上,在雨养条件下,小麦季施氮量为172kghm^(–2) (夏休闲-冬小麦)和192kg hm^(–2) (夏玉米-冬小麦)的基础上,OSN处理提高了氮肥干物质生产效率,增加各生育时期的干物质积累量,其花前干物质转运量和花后干物质积累量的协同增加使其获得了最高产量,实现增产增收,适宜在产量水平为5000kghm^(–2)的雨养旱地冬小麦高产栽培中应用。 展开更多
关键词 旱地冬小麦 减氮 有机肥替代 干物质积累转运 产量 经济效益
下载PDF
Effect of Freezing and Thawing on Ammonium Adsorption in Dryland Soil 被引量:1
14
作者 陈奕汀 程红光 +3 位作者 蒲晓 周坦 李倩 林春野 《Agricultural Science & Technology》 CAS 2012年第6期1287-1291,共5页
[Objective] This study aimed to investigate the effect of freezing and thawing on ammonium adsorption in dryland soil. [Method] The lab simulation test was conducted to study the effect of freeze-thaw action on the to... [Objective] This study aimed to investigate the effect of freezing and thawing on ammonium adsorption in dryland soil. [Method] The lab simulation test was conducted to study the effect of freeze-thaw action on the total adsorbed amount of ammonium (deionized water extract) and strongly-adsorbed amount of ammonium (0.01 mol/L KCl solution extract) in the dryland soil of Sanjiang Plain. [Result] Compared with linear equation, Freundlich equation could better fit the total adsorbed amount of ammonium in dryland soil (R 2 0.99, SE1.69). The freeze-thaw action almost had no influence on the total adsorbed amount of ammonium. When the initial concentration of NH 4 + increased from 0 to 200 mg/L, the total adsorbed NH 4 + amount increased from -0.52 to 39.0 mg/kg under freeze-thaw treatment (FTT), while it increased from -0.70 to 38.5 mg/kg under unfreeze-thaw treatment (UFTT). However, the strongly-adsorbed amount of ammonium presented linear relationship with the concentration of NH 4 + (R 2 0.99, SE0.54), and the strongly-adsorbed amount of ammonium increased significantly by FTT. When the initial concentration of NH 4 + increased from 0 to 200 mg/L, the strongly adsorbed amount increased linearly from 2.36 to 28.81 mg/kg for FTT and from -4.25 to 25.12 mg/kg for UFTT. The freezethaw action decreases the concentration of NH 4 + in soil solution when the net strongly-adsorbed NH 4 + in soil is zero., therefore, FTT helped to reduce the leaching of ammonium ions in soil. Freeze-thaw action mainly influenced the exchangeable adsorbed NH 4 + in soil. [Conclusion] This study provides theoretical basis for preventing excessive soil nitrogen from entering into water body and controlling water entrophication. 展开更多
关键词 Freeze-thaw action Ammonium adsorption Strong adsorption dryland soil Sanjiang plain
下载PDF
Dryland Expansion in Northern China from 1948 to 2008 被引量:12
15
作者 LI Yue HUANG Jianping +1 位作者 JI Mingxia RAN Jinjiang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期870-876,共7页
This study examines the expansion of drylands and regional climate change in northern China by analyzing the variations in aridity index (AI), surface air temperature (SAT), precipitation and potential evapotransp... This study examines the expansion of drylands and regional climate change in northern China by analyzing the variations in aridity index (AI), surface air temperature (SAT), precipitation and potential evapotranspiration (PET) from 1948 to 2008. It is found that the drylands of northern China have expanded remarkably in the last 61 years. The area of drylands of the last 15 years (1994--2008) is 0.65 × 106 km2 (12%) larger than that in the period 1948-62. The boundary of drylands has extended eastward over Northeast China by about 2 °of longitude and by about 1° of latitude to the south along the middle- to-lower reaches of the Yellow River. A zonal band of expansion of semi-arid regions has occurred, stretching from western Heilongjiang Province to southern Gansu Province, while shifts to the east of semi-arid regions in dry subhumid regions have also occurred. Results show that the aridity trend of drylands in northern China is highly correlated with the long-term trend of precipitation and PET, and the expansion of semi-arid regions plays a dominant role in the areal extent of drylands, which is nearly 10 times larger than that in arid and subhumid regions. 展开更多
关键词 aridity index dryland expansion climate variation northern China
下载PDF
Human induced dryland degradation in Ordos Plateau,China,revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series 被引量:16
16
作者 Jing ZHANG JianMing NIU +4 位作者 Tongliga BAO Alexander BUYANTUYEV Qing ZHANG JianJun DONG XueFeng ZHANG 《Journal of Arid Land》 SCIE CSCD 2014年第2期219-229,共11页
Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation ind... Land degradation causes serious environmental problems in many regions of the world, and although it can be effectively assessed and monitored using a time series of rainfall and a normalized difference vegetation index (NDVI) from remotely-sensed imagery, dividing human-induced land degradation from vegetation dynamics due to climate change is not a trivial task. This paper presented a multilevel statistical modeling of the NDVI-rainfall relationship to detect human-induced land degradation at local and landscape scales in the Ordos Plateau of Inner Mongolia, China, and recognized that anthropogenic activities result in either positive (land restoration and re-vegetation) or negative (degradation) trends. Linear regressions were used to assess the accuracy of the multi- level statistical model. The results show that: (1) land restoration was the dominant process in the Ordos Plateau between 1998 and 2012; (2) the effect of the statistical removal of precipitation revealed areas of human-induced land degradation and improvement, the latter reflecting successful restoration projects and changes in land man- agement in many parts of the Ordos; (3) compared to a simple linear regression, multilevel statistical modeling could be used to analyze the relationship between the NDVI and rainfall and improve the accuracy of detecting the effect of human activities. Additional factors should be included when analyzing the NDVI-rainfall relationship and detecting human-induced loss of vegetation cover in drylands to improve the accuracy of the approach and elimi- nate some observed non-significant residual trends. 展开更多
关键词 NDVl-rainfall relationship anthropogenic activities multilevel statistical modeling land degradation dryland Ordos Plateau
下载PDF
Sensitivity of Potential Evapotranspiration Estimation to the Thornthwaite and Penman–Monteith Methods in the Study of Global Drylands 被引量:7
17
作者 Qing YANG Zhuguo MA +1 位作者 Ziyan ZHENG Yawen DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1381-1394,共14页
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(... Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change. 展开更多
关键词 potential evapotranspiration global drylands Thornthwaite Penman–Monteith
下载PDF
Response of yield increase for dryland winter wheat to tillage practice during summer fallow and sowing method in the Loess Plateau of China 被引量:8
18
作者 LI Hui XUE Jian-fu +2 位作者 GAO Zhi-qiang XUE Nai-wen YANG Zhen-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期817-825,共9页
Soil moisture is the most critical limiting factor impacting yields of dryland winter wheat(Triticum aestivum L.) and it is strongly affected by tillage practice and sowing methods. This study was to assess the link b... Soil moisture is the most critical limiting factor impacting yields of dryland winter wheat(Triticum aestivum L.) and it is strongly affected by tillage practice and sowing methods. This study was to assess the link between sowing method and tillage practice during summer fallow and their subsequent effect on soil moisture and grain yield. Furthermore, we sought to identify a more appropriate farming management practice for winter wheat production in Loess Plateau region of China. The experiment was conducted from 2011 to 2013, using a two-factor split plot design, including subsoiling(SS) or no tillage(NT) during summer fallow for main plots, and conventional drill sowing(DS) or plastic film drill sowing(FM) for subplots. Results showed that the maximum soil water storage(SWS) was under SS×FM treatment with values of 649.1 mm(2011–2012) and 499.4 mm(2012–2013). The SWS during the 2011–2012 growing season were 149.7 mm higher than that in the 2012–2013 growing season. And adoption of SS×FM significantly increased precipitation use efficiency(PUE) and water use efficiency(WUE) compared to other treatments for both seasons. Moreover, adoption of SS×FM significantly increased yield by 13.1, 14.4, 47.3% and 25.9, 39.1, 35.7% than other three treatments during the two growing seasons, respectively. In summary, combining subsoiling during summer fallow with plastic film drill sowing(SS×FM) increased SWS at sowing and effectively improved WUE, thus representing a feasible technology to improve grain yield of dryland winter wheat in the Loess Plateau of China. 展开更多
关键词 dryland winter wheat SUBSOILING sowing method soil water storage YIELD
下载PDF
Comparison of Dryland Climate Change in Observations and CMIP5 Simulations 被引量:5
19
作者 JI Mingxia HUANG Jianping +1 位作者 XIE Yongkun LIU Jun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1565-1574,共10页
A comparison of observations with 20 climate model simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) revealed that observed dryland expansion amounted to 2.61 × 10^6 km^2 during the 58... A comparison of observations with 20 climate model simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) revealed that observed dryland expansion amounted to 2.61 × 10^6 km^2 during the 58 years from 1948 to 2005, which was four times higher than that in the simulations (0.55 × 10^6 km^2). Dryland expansion was accompanied by a decline in aridity index (AI) (drying trend) as a result of decreased precipitation and increased potential evapotranspiration across all dryland subtype areas in the observations, especially in the semi-arid and dry subhumid regions. However, the CMIP5 multi-model ensemble (MME) average performed poorly with regard to the decreasing trends of AI and precipitation. By analyzing the factors controlling AI, we found that the overall bias of AI in the simulations, compared with observations, was largely due to limitations in the simulation of precipitation. The simulated precipitation over global drylands was substantially overestimated compared with observations across all subtype areas, and the spatial distribution of precipitation in the MME was largely inconsistent in the African Sahel, East Asia, and eastern Australia, where the semi-arid and dry subhumid regions were mainly located. 展开更多
关键词 aridity index dryland expansion climate change CMIP5
下载PDF
Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China 被引量:8
20
作者 ZHENG Jing FAN Junliang +4 位作者 ZHANG Fucang YAN Shicheng GUO Jinjin CHEN Dongfeng LI Zhijun 《Journal of Arid Land》 SCIE CSCD 2018年第5期794-808,共15页
High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mul... High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mulching mode treatments: flat cultivation with non-mulching, flat cultivation with straw mulching, plastic-covered ridge with bare furrow and plastic-covered ridge with straw-covered furrow; and planting density treatments: low planting density of 45,000 plants/hm^2, medium planting density of 67,500 plants/hm^2 and high planting density of 90,000 plants/hm^2) on rainfall partitioning by dryland maize canopy, especially the resulted net rainfall input beneath the maize canopy, we measured the gross rainfall, throughfall and stemflow at different growth stages of dryland maize in 2015 and 2016 on the Loess Plateau of China. The canopy interception loss was estimated by the water balance method. Soil water storage, leaf area index, grain yield(as well as it components) and water use efficiency of dryland maize were measured or calculated. Results showed that the cumulative throughfall, cumulative stemflow and cumulative canopy interception loss during the whole growing season accounted for 42.3%–77.5%, 15.1%–36.3% and 7.4%–21.4% of the total gross rainfall under different treatments, respectively. Soil mulching could promote the growth and development of dryland maize and enhance the capability of stemflow production and canopy interception loss, thereby increasing the relative stemflow and relative canopy interception loss and reducing the relative throughfall. The relative stemflow and relative canopy interception loss generally increased with increasing planting density, while the relative throughfall decreased with increasing planting density. During the two experimental years, mulching mode had no significant influence on net rainfall due to the compensation between throughfall and stemflow, whereas planting density significantly affected net rainfall. The highest grain yield and water use efficiency of dryland maize were obtained under the combination of medium planting density of 67,500 plants/hm^2 and mulching mode of plastic-covered ridge with straw-covered furrow. Soil mulching can reduce soil evaporation and retain more soil water for dryland maize without reducing the net rainfall input beneath the maize canopy, which may alleviate the contradiction between high soil water consumption and insufficient rainfall input of the soil. In conclusion, the application of medium planting density(67,500 plants/hm^2) under plastic-covered ridge with bare furrow is recommended for increasing dryland maize production on the Loess Plateau of China. 展开更多
关键词 dryland maize THROUGHFALL STEMFLOW canopy interception loss yield water use efficiency Loess Plateau
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部