The Huanghe River captures the Diaokou River in 1964 and forms a deltaic lobe in the subsequent 12 a. The progradational process of the Diaokou lobe is in associated with complicated evolution of riverine sheet floodi...The Huanghe River captures the Diaokou River in 1964 and forms a deltaic lobe in the subsequent 12 a. The progradational process of the Diaokou lobe is in associated with complicated evolution of riverine sheet flooding, merging, and swinging. On the basis of 11 borehole cores and 210 km high resolution seismic reflection data set, the sedimentary sequence and dynamic environment of the Diaokou lobe Cone subdelta lobe of the modern Huanghe River Delta) are studied. The stratigraphy of the lobe is characterized by an upward-coarsening ternary structure and forms a progradational deltaic clinoform. Totally six seismic surfaces are identifiable in seismic profiles, bounded six seismic units (SUs). These SUs correspond to six depositional units (DUs) in the borehole cores, and among them, SUs 4-6 (DUs D to F) consist of the modern Diaokou lobe. Lithological and seismic evidences indicate that the delta plain part of the Diaokou lobe is comprised primarily by fluvial lag sediments together with sediments from sidebanks, overbanks, fluvial flood plains and levees, while the delta front part is a combination of river mouth bar sands (majority) and distal bar and deltaic margin sediments (minority). As a result of the high sedimentation rate and weak hydrodynamic regime in the Huanghe River Delta, the sediments in the delta front are dominated by fine-grained materials. The grain size analysis indicates the Huanghe River hyperpycnal-concentrated flow shows the suspension, transportation and sedimentation characteristics of gravity flow, and the sediment transportation is primarily dominated by graded suspension, while uniform suspension and hydrostatic suspension are also observed in places. The strength of the hydrodynamic regime weakens gradually offshore from riverbed, river mouth bar, sidebank, distal bar subfacies to delta lateral margin and flooding plain subfacies.展开更多
The sedimentary history of a Huanghe(Yellow)River delta lobe can be divided into four stages.In the first stage,the crevasse splays and short-lived distributary channel deposits in the subaerial deltaand sheet silt in...The sedimentary history of a Huanghe(Yellow)River delta lobe can be divided into four stages.In the first stage,the crevasse splays and short-lived distributary channel deposits in the subaerial deltaand sheet silt in the subaqueous delta were well developed.In the second stage,further differentiationof sedimentary environments occurred in the subaerial delta lobe(distributary channel,natural levee,flood plain,central lower delta plain and lateral lower delta plain)and the subaqueous delta lobe(prodelta,delta front and delta lateral).In the third stage,crevasse splay and short-lived distributarychannel deposits mostly occurred in the lower or lower-middle part of the subaerial delta lobe,andsheet silt accumulated off the river mouth.In the fourth stage,the abandoned lobe was reworked.The common vertical sequence of the modern Huanghe River delta showed alternating clayey silt andsilt layers.A complete sequence from prodelta to upper delta plain was commonly composed of twoor more delta lobes.展开更多
Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved different...Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved differently in various regions,the evolutionary process of tidal creeks in the Huanghe(Yellow)River delta of China,one of the most active deltas worldwide,is not entirely clear.Therefore,the evolution of tidal creeks in the delta from 1981 to 2021 was investigated by quantitatively analysing the tidal creeks and developing a standard for dividing their evolution periods.Visual interpretation and supervised classification methods were applied to the Landsat images to extract the tidal creek network,and 17 groups of tidal creek systems were selected.Results indicate that Creek S 1 was the most developed creek for having 113 tidal creeks totaling 65.8 km in length,while Creek E 3 had the fastest growth rate for having average annual increase of 1.9 km.Meanwhile,the level of tidal creeks increased,the average and median lengths of tidal creeks increased,and the number of tidal creeks decreased since 1981.The evolution of the tidal creek system could be divided into four stages,namely,rising,developing,stabilizing,and degrading.Analyses of a representative tidal creek show that there was no degenerated tidal creek during the rising period,with an increase in the number of 50 and a length increase of 57.9 km between 1981 and 1989.The proportion of new tidal creeks in the developing period was more than 50%and the new tidal creeks in the stabilizing period were equal to the degraded tidal creeks.Extinct tidal creeks were greater than 50%during the degrading period.There was no fixed order of tidal creek evolution in each period,and there may be a skip in evolution.Our findings provided a reference for studying the evolution of tidal creeks.展开更多
The Huanghe River Delta is one of the world's large rivers, the Huanghe River Delta paleoenvironmental evolution in the Huanghe River has been a hot issue since the Last Glacial. Based on the core time series establi...The Huanghe River Delta is one of the world's large rivers, the Huanghe River Delta paleoenvironmental evolution in the Huanghe River has been a hot issue since the Last Glacial. Based on the core time series established by combining AMS 14C dating of Core DYZK1 sediments in submerged of Huanghe River Delta and acoustic sequence on sub-bottom profile, phytolith analyses are carried out on 96 sediment samples. The grain size parameters, magnetic susceptibility are combined with the vertical changes of biostratum to reconstruct the paleo-sedimentary and climatic conditions in the Huanghe River Delta. The study results show that there is a significant vertical change law in the index parameters, and that sedimentary environment of Huanghe River Delta experienced an evolutionary process of fluvial facies-sealand transition facies-tidal flat facies-neritic facies- delta facies since 26.0 ka B. P.. The phytolith analyses results are as following. Firstly, The phytoliths are divided into lanceolate, smooth-elongated, spiny-elongated, rondel, long rectangular, bulliform and other types. In different sedimental environment, the phytolith content changes regularly, indicating that the phytolith assembles in the same sedimentary environment has a certain degree of stability. Secondly, The lanceolate, smooth-elongated and spiny-elongated categories of phytoliths have greater contents in the tidal flat facies and delta deposition, while have a smaller contents in the neritic facies and fluvial facies environment. Thirdly, Through comparative analysis of variation coefficient, the content of major phytolith categories in the sediment has a greater change amplitude in the sealand transition facies and fluvial facies deposition, while being more stable in the tidalflat facies and delta facies deposition.展开更多
On the basis of measuring the magnetic parameters of sediment in Core YDZ1, combined with a grain size analysis and Carbon-14 dating, the magnetic properties of sediment and sedimentary environment in the Huanghe(Yel...On the basis of measuring the magnetic parameters of sediment in Core YDZ1, combined with a grain size analysis and Carbon-14 dating, the magnetic properties of sediment and sedimentary environment in the Huanghe(Yellow River) Delta area after the last glacial maximum have been studied. The results show that the ferrimagnetic minerals of a pseudo single domain and multi domain particles dominate the magnetic properties of sediment in Core YDZ1. The imperfect anti ferrimagnetic minerals have more contribution on sediment in a depth of 24.0–22.1 m, and more stable-single domain and pseudo single domain particles exist. The susceptibility of anhysteretic remanent magnetization and the ratio of the susceptibility of anhysteretic remanent magnetization to saturation isothermal remanent magnetization show a decrease trend below depth of 24 m, a marked increase trend in a depth of 24.0–13.5 m, and a rapid decrease at depth of 13.5 m, then a fluctuation trend upward. The above two magnetic parameters and the ratio of the susceptibility of anhysteretic remanent magnetization to the mass susceptibility can be regarded as the proxy indicators for the content of clay(〈4 μm)and the fine-grained size(〈32 μm). The sedimentary environment after the last glacial maximum in the Huanghe Delta area has experienced the fluvial facies, the tidal flat facies, the neritic facies, the pro delta facies, the delta front facies and the floodplain facies. Thickness of the Holocene transgression layer is 10.5 m and the depth of substrate is about 24 m according to the YDZ1 core. The sedimentary dynamic has a variation trend with strongweak-strong, which has been proved by the Flemming triangular schema.展开更多
River-mouth bar is a fundamental element to constitute a delta system, and its internal facies architectures are vital to reconstruct delta evolution history and study high-resolution sequence stratigraphy. Changxing ...River-mouth bar is a fundamental element to constitute a delta system, and its internal facies architectures are vital to reconstruct delta evolution history and study high-resolution sequence stratigraphy. Changxing Island is a representative mouth-bar complex in the modern Changjiang Delta. Its vertical stacked strata produced by delta progradation were first studied by detailed facies analysis of core CX03, and then a general facies architecture and evolution history of mouth-bar complexes in the modern Changjiang Delta were discussed through a comparative study of 5 different cores and historical charts. A progradational deltaic sequence has generally a similar internal facies architecture, composed of massive muddy deposits of prodelta and delta-front slope facies at the bottom, sand-dominated deposits of delta-front platform, inter-bar channel and mouth-bar facies at the middle, and heterolithic deposits of tidal flat and saltmarsh facies at the top. There is a significant time lag for the initial formation of channel-mouth bar systems between Chongming and Jiuduansha Islands. Compared with subtidal flats, sedimentation rates on intertidal flats were highly accelerated, potentially resulting from weakening wave and tidal strength over extensive intertidal flats and increasing human embankment activities in the last few centuries. These findings provide some new clues to understand modern and ancient mouth-bar evolution and resultant sequence strata in tide-dominated deltas.展开更多
基金The National Program on Global Change and Air-sea Interaction of China under contract No.GASI-GEOGE-05the NSFC-Shandong Joint Fund for Marine Science Research Centers of China under contract No.U1606401+1 种基金the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology of China under contract No.MGQNLM-KF201715the National Natural Science Foundation of China under contract No.41206054
文摘The Huanghe River captures the Diaokou River in 1964 and forms a deltaic lobe in the subsequent 12 a. The progradational process of the Diaokou lobe is in associated with complicated evolution of riverine sheet flooding, merging, and swinging. On the basis of 11 borehole cores and 210 km high resolution seismic reflection data set, the sedimentary sequence and dynamic environment of the Diaokou lobe Cone subdelta lobe of the modern Huanghe River Delta) are studied. The stratigraphy of the lobe is characterized by an upward-coarsening ternary structure and forms a progradational deltaic clinoform. Totally six seismic surfaces are identifiable in seismic profiles, bounded six seismic units (SUs). These SUs correspond to six depositional units (DUs) in the borehole cores, and among them, SUs 4-6 (DUs D to F) consist of the modern Diaokou lobe. Lithological and seismic evidences indicate that the delta plain part of the Diaokou lobe is comprised primarily by fluvial lag sediments together with sediments from sidebanks, overbanks, fluvial flood plains and levees, while the delta front part is a combination of river mouth bar sands (majority) and distal bar and deltaic margin sediments (minority). As a result of the high sedimentation rate and weak hydrodynamic regime in the Huanghe River Delta, the sediments in the delta front are dominated by fine-grained materials. The grain size analysis indicates the Huanghe River hyperpycnal-concentrated flow shows the suspension, transportation and sedimentation characteristics of gravity flow, and the sediment transportation is primarily dominated by graded suspension, while uniform suspension and hydrostatic suspension are also observed in places. The strength of the hydrodynamic regime weakens gradually offshore from riverbed, river mouth bar, sidebank, distal bar subfacies to delta lateral margin and flooding plain subfacies.
文摘The sedimentary history of a Huanghe(Yellow)River delta lobe can be divided into four stages.In the first stage,the crevasse splays and short-lived distributary channel deposits in the subaerial deltaand sheet silt in the subaqueous delta were well developed.In the second stage,further differentiationof sedimentary environments occurred in the subaerial delta lobe(distributary channel,natural levee,flood plain,central lower delta plain and lateral lower delta plain)and the subaqueous delta lobe(prodelta,delta front and delta lateral).In the third stage,crevasse splay and short-lived distributarychannel deposits mostly occurred in the lower or lower-middle part of the subaerial delta lobe,andsheet silt accumulated off the river mouth.In the fourth stage,the abandoned lobe was reworked.The common vertical sequence of the modern Huanghe River delta showed alternating clayey silt andsilt layers.A complete sequence from prodelta to upper delta plain was commonly composed of twoor more delta lobes.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021ME167)the Key Research and Development Program of Shandong Province(No.2022CXGC010401)。
文摘Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved differently in various regions,the evolutionary process of tidal creeks in the Huanghe(Yellow)River delta of China,one of the most active deltas worldwide,is not entirely clear.Therefore,the evolution of tidal creeks in the delta from 1981 to 2021 was investigated by quantitatively analysing the tidal creeks and developing a standard for dividing their evolution periods.Visual interpretation and supervised classification methods were applied to the Landsat images to extract the tidal creek network,and 17 groups of tidal creek systems were selected.Results indicate that Creek S 1 was the most developed creek for having 113 tidal creeks totaling 65.8 km in length,while Creek E 3 had the fastest growth rate for having average annual increase of 1.9 km.Meanwhile,the level of tidal creeks increased,the average and median lengths of tidal creeks increased,and the number of tidal creeks decreased since 1981.The evolution of the tidal creek system could be divided into four stages,namely,rising,developing,stabilizing,and degrading.Analyses of a representative tidal creek show that there was no degenerated tidal creek during the rising period,with an increase in the number of 50 and a length increase of 57.9 km between 1981 and 1989.The proportion of new tidal creeks in the developing period was more than 50%and the new tidal creeks in the stabilizing period were equal to the degraded tidal creeks.Extinct tidal creeks were greater than 50%during the degrading period.There was no fixed order of tidal creek evolution in each period,and there may be a skip in evolution.Our findings provided a reference for studying the evolution of tidal creeks.
基金The Natural Science Foundation of Shandong Province under contract No.ZR2013DQ025the Public Science and Technology Research Funds Projects of Ocean under contract No.201005029the National Natural Science Foundation of China under contract No.41206054
文摘The Huanghe River Delta is one of the world's large rivers, the Huanghe River Delta paleoenvironmental evolution in the Huanghe River has been a hot issue since the Last Glacial. Based on the core time series established by combining AMS 14C dating of Core DYZK1 sediments in submerged of Huanghe River Delta and acoustic sequence on sub-bottom profile, phytolith analyses are carried out on 96 sediment samples. The grain size parameters, magnetic susceptibility are combined with the vertical changes of biostratum to reconstruct the paleo-sedimentary and climatic conditions in the Huanghe River Delta. The study results show that there is a significant vertical change law in the index parameters, and that sedimentary environment of Huanghe River Delta experienced an evolutionary process of fluvial facies-sealand transition facies-tidal flat facies-neritic facies- delta facies since 26.0 ka B. P.. The phytolith analyses results are as following. Firstly, The phytoliths are divided into lanceolate, smooth-elongated, spiny-elongated, rondel, long rectangular, bulliform and other types. In different sedimental environment, the phytolith content changes regularly, indicating that the phytolith assembles in the same sedimentary environment has a certain degree of stability. Secondly, The lanceolate, smooth-elongated and spiny-elongated categories of phytoliths have greater contents in the tidal flat facies and delta deposition, while have a smaller contents in the neritic facies and fluvial facies environment. Thirdly, Through comparative analysis of variation coefficient, the content of major phytolith categories in the sediment has a greater change amplitude in the sealand transition facies and fluvial facies deposition, while being more stable in the tidalflat facies and delta facies deposition.
基金The National Natural Science Foundation of China under contract Nos 41306077 and 41501567the Major Program of University Natural Science Foundation of Jiangsu Province of China under contract No.14KJA170006the Natural Science Foundation of Shandong Province of China under contract No.ZR2013DQ025
文摘On the basis of measuring the magnetic parameters of sediment in Core YDZ1, combined with a grain size analysis and Carbon-14 dating, the magnetic properties of sediment and sedimentary environment in the Huanghe(Yellow River) Delta area after the last glacial maximum have been studied. The results show that the ferrimagnetic minerals of a pseudo single domain and multi domain particles dominate the magnetic properties of sediment in Core YDZ1. The imperfect anti ferrimagnetic minerals have more contribution on sediment in a depth of 24.0–22.1 m, and more stable-single domain and pseudo single domain particles exist. The susceptibility of anhysteretic remanent magnetization and the ratio of the susceptibility of anhysteretic remanent magnetization to saturation isothermal remanent magnetization show a decrease trend below depth of 24 m, a marked increase trend in a depth of 24.0–13.5 m, and a rapid decrease at depth of 13.5 m, then a fluctuation trend upward. The above two magnetic parameters and the ratio of the susceptibility of anhysteretic remanent magnetization to the mass susceptibility can be regarded as the proxy indicators for the content of clay(〈4 μm)and the fine-grained size(〈32 μm). The sedimentary environment after the last glacial maximum in the Huanghe Delta area has experienced the fluvial facies, the tidal flat facies, the neritic facies, the pro delta facies, the delta front facies and the floodplain facies. Thickness of the Holocene transgression layer is 10.5 m and the depth of substrate is about 24 m according to the YDZ1 core. The sedimentary dynamic has a variation trend with strongweak-strong, which has been proved by the Flemming triangular schema.
基金funded by the National Natural Science Foundation of China(Nos.41776052,41476031)the China-ASEAN Maritime Cooperation Fund,the National Programme on Global Change and Air-Sea Interaction(No.GASI-GEOGE-03)the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF201506)
文摘River-mouth bar is a fundamental element to constitute a delta system, and its internal facies architectures are vital to reconstruct delta evolution history and study high-resolution sequence stratigraphy. Changxing Island is a representative mouth-bar complex in the modern Changjiang Delta. Its vertical stacked strata produced by delta progradation were first studied by detailed facies analysis of core CX03, and then a general facies architecture and evolution history of mouth-bar complexes in the modern Changjiang Delta were discussed through a comparative study of 5 different cores and historical charts. A progradational deltaic sequence has generally a similar internal facies architecture, composed of massive muddy deposits of prodelta and delta-front slope facies at the bottom, sand-dominated deposits of delta-front platform, inter-bar channel and mouth-bar facies at the middle, and heterolithic deposits of tidal flat and saltmarsh facies at the top. There is a significant time lag for the initial formation of channel-mouth bar systems between Chongming and Jiuduansha Islands. Compared with subtidal flats, sedimentation rates on intertidal flats were highly accelerated, potentially resulting from weakening wave and tidal strength over extensive intertidal flats and increasing human embankment activities in the last few centuries. These findings provide some new clues to understand modern and ancient mouth-bar evolution and resultant sequence strata in tide-dominated deltas.