The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern ...The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.展开更多
The sown area of winter wheat in the Huang-Huai-Hai(HHH) Plain accounts for over 65% of the total sown area of winter wheat in China. Thus, it is important to monitor the winter wheat growth condition and reveal the...The sown area of winter wheat in the Huang-Huai-Hai(HHH) Plain accounts for over 65% of the total sown area of winter wheat in China. Thus, it is important to monitor the winter wheat growth condition and reveal the main factors that influence its dynamics. This study assessed the winter wheat growth condition based on remote sensing data, and investigated the correlations between different grades of winter wheat growth and major meteorological factors corresponding. First, winter wheat growth condition from sowing until maturity stage during 2011–2012 were assessed based on moderate-resolution imaging spectroradiometer(MODIS) normalized difference vegetation index(NDVI) time-series dataset. Next, correlation analysis and geographical information system(GIS) spatial analysis methods were used to analyze the lag correlations between different grades of winter wheat growth in each phenophase and the meteorological factors that corresponded to the phenophases. The results showed that the winter wheat growth conditions varied over time and space in the study area. Irrespective of the grades of winter wheat growth, the correlation coefficients between the winter wheat growth condition and the cumulative precipitation were higher than zero lag(synchronous precipitation) and one lag(pre-phenophase precipitation) based on the average values of seven phenophases. This showed that the cumulative precipitation during the entire growing season had a greater effect on winter wheat growth than the synchronous precipitation and the pre-phenophase precipitation. The effects of temperature on winter wheat growth varied according to different grades of winter wheat growth based on the average values of seven phenophases. Winter wheat with a better-than-average growth condition had a stronger correlation with synchronous temperature, winter wheat with a normal growth condition had a stronger correlation with the cumulative temperature, and winter wheat with a worse-than-average growth condition had a stronger correlation with the pre-phenophase temperature. This study may facilitate a better understanding of the quantitative correlations between different grades of crop growth and meteorological factors, and the adjustment of field management measures to ensure a high crop yield.展开更多
文摘The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.
基金financially supported by the National Nonprofit Institute Research Grant of Chinese Academy of Agricultural Sciences(IARRP-2015-8)the European Union seventh framework"MODEXTREME"(modelling vegetation response to extreme events)programme(613817)
文摘The sown area of winter wheat in the Huang-Huai-Hai(HHH) Plain accounts for over 65% of the total sown area of winter wheat in China. Thus, it is important to monitor the winter wheat growth condition and reveal the main factors that influence its dynamics. This study assessed the winter wheat growth condition based on remote sensing data, and investigated the correlations between different grades of winter wheat growth and major meteorological factors corresponding. First, winter wheat growth condition from sowing until maturity stage during 2011–2012 were assessed based on moderate-resolution imaging spectroradiometer(MODIS) normalized difference vegetation index(NDVI) time-series dataset. Next, correlation analysis and geographical information system(GIS) spatial analysis methods were used to analyze the lag correlations between different grades of winter wheat growth in each phenophase and the meteorological factors that corresponded to the phenophases. The results showed that the winter wheat growth conditions varied over time and space in the study area. Irrespective of the grades of winter wheat growth, the correlation coefficients between the winter wheat growth condition and the cumulative precipitation were higher than zero lag(synchronous precipitation) and one lag(pre-phenophase precipitation) based on the average values of seven phenophases. This showed that the cumulative precipitation during the entire growing season had a greater effect on winter wheat growth than the synchronous precipitation and the pre-phenophase precipitation. The effects of temperature on winter wheat growth varied according to different grades of winter wheat growth based on the average values of seven phenophases. Winter wheat with a better-than-average growth condition had a stronger correlation with synchronous temperature, winter wheat with a normal growth condition had a stronger correlation with the cumulative temperature, and winter wheat with a worse-than-average growth condition had a stronger correlation with the pre-phenophase temperature. This study may facilitate a better understanding of the quantitative correlations between different grades of crop growth and meteorological factors, and the adjustment of field management measures to ensure a high crop yield.