Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats wer...Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism.展开更多
Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilizat...Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].展开更多
Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. ...Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.展开更多
Objective To analyze patent application status of Scutellaria Barbata industrial chain and provide some suggestions for its patent application and product development.Methods Patent data were collected through IncoPat...Objective To analyze patent application status of Scutellaria Barbata industrial chain and provide some suggestions for its patent application and product development.Methods Patent data were collected through IncoPat patent analysis system.Meanwhile,the patent analysis method combined with text mining method was adopted to analyze the situation and development trend of patent application in China’s Scutellaria Barbata industrial chain by using pie chart,bubble chart,trend chart and other visual charts to display the results.Results and Conclusion The patent application of Scutellaria Barbata in China mainly experienced three stages:Slow development,rapid development,and recession period.The number of patents is large,but the authorization rate is low.Individuals and enterprises are the main applicants for patent applications.Product development is involved in the whole industrial chain,but it basically focuses on its efficacy in downstream drugs,health food and other aspects.Therefore,government should enhance the awareness of patent protection,encourage collaborative innovation in industry-university-research to promote the combination of basic research and market application.Besides,it should provide theoretical support to tackle the problem of short board products,which can promote the transformation of scientific and technological achievements and contribute to the upgrading of Scutellaria Barbata industrial chain.展开更多
Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress...Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress.So the physiological and biochemical characteristics of potted Scutellaria baicalensis Georgi plants were investigated under continuous water stress condition.The results showed that the water content in roots,stems and leaves,together with chlorophyll content of the leaves decreased as the water stress strengthened.Simultaneously,the specific leaf weight increased,and the content of proline and soluble sugar in Scutellaria baicalensis Georgi leaves increased significantly.The changing trends of the baicalin content in the roots,stems and leaves of Scutellaria baicalensis Georgi were different.It increased continuously in roots,while ascended constantly in the stems and leaves during the early days under the water stress,but decreased sharply under the heavy stress.In conclusion,proline and soluble sugar had a close correlation with the drought resistance of Scutellaria baicalensis Georgi.Moderate drought is in favor of synthesizing the secondary metabolites.展开更多
The seasonal and source variations of flavonoid contents in Scutellariae Radix were investigated by using the materials collected at the same place in Liaoning Province, China, during three years, 1990~1992, and in s...The seasonal and source variations of flavonoid contents in Scutellariae Radix were investigated by using the materials collected at the same place in Liaoning Province, China, during three years, 1990~1992, and in seven other provinces in China. Four principal flavonoids in the plant roots, i.e., baicalin, baicalein, wogonin 7 O glucuronide and wogonin were analyzed by using a reversed phase chromatographic system with a chemically bonded ODS silica gel column and phosphate buffer methanol (68:32 and 1:1) as mobile phase. The contents of the four compounds combined in the herb collected at Chengde, Hebei Province are the highest. The results show that the best time for harvesting the roots in Liaoning Province is the end of August.展开更多
A new flavone C glycoside, chrysin 8 C β D glucoside (1) and a known phenethyl alcohol glycoside, acteoside (2), were isolated for the first time from the roots of Scutellaria baicalensis (Labiatae).
Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis...Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavon- oid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel- laria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func- tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.展开更多
Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis(S. baicalensis) against lipopolysaccharide(LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extr...Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis(S. baicalensis) against lipopolysaccharide(LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS(5 mg/kg of body weight, intraperitoneal injection). Both protein and m RNA levels of cytokines, such as tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in liver tissues were evaluated by ELISA assay and quantitative PCR. C yclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB protein levels in liver tissues were analyzed by western blotting. Results: Liver injury induced by LPS signifi cantly increased necrosis factor alpha, interleukin-1β, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB in liver tissues. Treatment with ethanol extracts of S. baicalensis prevented all of these observed changes associated with LPS-induced injury in liver mice.Conclusions: Our study showed that S. baicalensis is potentially protective against LPS-induced liver injury in mice.展开更多
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to...Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide.展开更多
AIM: To observe the attenuation of ethanol extract of Herba Scutellaria barbata (SE) against diabetic retinopathy (DR) and its engaged mechanism. METHODS: C57BL/6J mice were intraperitoneally injected with stre...AIM: To observe the attenuation of ethanol extract of Herba Scutellaria barbata (SE) against diabetic retinopathy (DR) and its engaged mechanism. METHODS: C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ, 55 mg/kg) for 5 consecutive days to induce diabetes, The diabetic mice were orally given with SE (100, 200 mg/kg) for lmo at lmo after STZ injection. Blood-retinal barrier (BRB) breakdown was detected by using Evans blue permeation assay. Real-time polymerase chain reaction (RT-PCR), Western blot and immunofiuorescence staining were used to detect mRNA and protein expression. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum contents of tumor necrosis factor-e (TNF-a) and interleukin (IL)-II. RESULTS: SE (100, 200 mg/kg) reversed the breakdown of BRB in STZ-induced diabetic mice. The decreased expression of retinal claudin-1 and claudin-19, which are both tight junction (T J) proteins, was reversed by SE. SE decreased the increased serum contents and retinal mRNA expression of TNF-a and IL-113. SE also decreased the increased retinal expression of intercellular cell adhesion molecule-1 (ICAM-1). SE reduced the increased phosphorylation of nuclear factor kappa B (NFKB) p65 and its subsequent nuclear translocation in retinas from STZ- induced diabetic mice. Results of Western blot and retinal immunofluorescence staining of ionized calcium-binding adapter molecule 1 (Ibal) demonstrated that SE abrogated the activation of microglia cells in STZ-induced diabetic mice. CONCLUSION: SE attenuates the development of DR by inhibiting retinal inflammation and restoring the decreased expression of TJ proteins including claudin-1 and claudin-19.展开更多
Flavonoids from Huangqin(dried roots of Scutellaria baicalensis Georgi) have anti-inflammatory effects, and are considered useful for treatment of spinal cord injury. To verify this hypothesis, the T9-10 spinal cord...Flavonoids from Huangqin(dried roots of Scutellaria baicalensis Georgi) have anti-inflammatory effects, and are considered useful for treatment of spinal cord injury. To verify this hypothesis, the T9-10 spinal cord segments of rats were damaged using Allen's method to establish a rat spinal cord injury model. Before model establishment, Huangqin flavonoid extraction(12.5 g/kg) was administered intragastrically for 1 week until 28 days after model establishment. Methylprednisolone(30 mg/kg) was injected into the tail vein at 30 minutes after model establishment as a positive control. Basso, Beattie, and Bresnahan locomotor scale scores were used to assess hind limb motor function. Hematoxylin-eosin staining was used to detect pathological changes in the injured spinal cord. Immunofluorescence and western blot assays were performed to measure immunoreactivity and expression levels of brain-derived neurotrophic factor, neuronal marker neurofilament protein, microglial marker CD11 b and astrocyte marker glial fibrillary acidic protein in the injured spinal cord. Huangqin flavonoid extraction markedly reduced spinal cord hematoma, inflammatory cell infiltration and cavities and scars, and increased the Basso, Beattie, and Bresnahan locomotor scale scores; these effects were identical to those of methylprednisolone. Huangqin flavonoid extraction also increased immunoreactivity and expression levels of brain-derived neurotrophic factor and neurofilament protein, and reduced immunoreactivity and expression levels of CD11 b and glial fibrillary acidic protein, in the injured spinal cord. Overall, these data suggest that Huangqin flavonoid extraction can promote recovery of spinal cord injury by inducing brain-derived neurotrophic factor and neurofilament protein expression, reducing microglia activation and regulating reactive astrocytes.展开更多
基金sponsored by Shandong Provincial Key Research and Development Program(Major Technological Innovation Project)([2021]CXGC010508)Guizhou Province Youth Science and Technology Talent Plan(YQK[2023]038)+1 种基金Science and Technology Department of Zunyi City of Guizhou province of China([2020]7)Key project at central government level:the ability establishment of sustainable use for valuable Chinese medicine resources(2060302).
文摘Background:The study aimed to investigate the protective effect and mechanism of total flavonoids of Scutellaria baicalensis(TFSB)on acute myocardial ischemia(AMI)rats by using functional metabonomics.Methods:Rats were divided into the Control,Model,AMI positive control(Propranolol hydrochloride,30 mg/kg),low dose TFSB(50 mg/kg),and high dose TFSB(100 mg/kg)groups.Rats received the corresponding treatment by intragastric administration once daily for 10 consecutive days.Electrocardiogram,myocardial enzyme,triphenyltetrazolium chloride staining,hematoxylin-eosin,and enzyme-linked immunosorbent assay were performed to evaluate the protective effect of TFSB on AMI rats.Then,the UHPLC-Q-Orbitrap MS method based on serum metabolomics was utilised to search for metabolic biomarkers and metabolic pathways.Subsequently,Western blot and RT-PCR techniques were employed to identify the respective genes and proteins.Results:Pharmacodynamics revealed that TFSB could ameliorate AMI in rats.The results of the metabolomics analysis indicated that the alterations in metabolic profile observed in rats with AMI were partially improved by treatment with TFSB.Moreover,the mRNA expression levels of 5-lipoxygenase(5-LOX)and 15-lipoxygenase(15-LOX)and the protein expression levels of 5-LOX,15-LOX,interleukin-1β(IL-1β),and NF-κB p65 were reduced following treatment with TFSB.Conclusion:The potential treatment of TFSB in AMI may be ascribed to its ability to regulate arachidonic acid metabolism.
基金supported by the National Natural Science Foundation of China(Grant No.:81773874).
文摘Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].
文摘Aim: This study aimed to investigate the protective effects of flavonoids from the stem and leaves of Scutellaria baicalensis Georgi (SSFs) against Aβ<sub>1-42</sub>-induced oligodendrocytes (OL) damage. Methods: Immunofluorescence was used for the detection of myelin-associated glycoprotein (MAG), a characteristic protein of rat oligodendrocytes (OLN-93 cells). To evaluate the potential protective effects of SSFs on OLN-93 cells injured by Aβ<sub>1-42</sub>, an injury model was established by subjecting OLN-93 cells to Aβ<sub>1-42</sub> exposed. Cell morphology was examined using an inverted microscope, while cell viability was assessed using the colorimetric method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Additionally, lactate dehydrogenase (LDH) was measured using the pyruvic acid reduction assay. The Ginkgo biloba leaf extract (GBE) injection was used as a positive control. Results: A total of >95% of the MAG immunofluorescence-positive cells were identified as oligodendrocytes. Gradually increasing concentrations of SSFs impaired the cells, and the maximum nondetrimental dose for OLN-93 cells was 75 mg/L. This study assessed the effects of SSFs on OLN-93 cells damaged by Aβ<sub>1-42</sub>. The results indicated that SSFs significantly improved OLN-93 cell morphological abnormal changes, increased the OLN-93 cell survival rate, and reduced LDH release. Conclusion: SSFs can alleviate Aβ<sub>1-42</sub>-induced damage of OL.
文摘Objective To analyze patent application status of Scutellaria Barbata industrial chain and provide some suggestions for its patent application and product development.Methods Patent data were collected through IncoPat patent analysis system.Meanwhile,the patent analysis method combined with text mining method was adopted to analyze the situation and development trend of patent application in China’s Scutellaria Barbata industrial chain by using pie chart,bubble chart,trend chart and other visual charts to display the results.Results and Conclusion The patent application of Scutellaria Barbata in China mainly experienced three stages:Slow development,rapid development,and recession period.The number of patents is large,but the authorization rate is low.Individuals and enterprises are the main applicants for patent applications.Product development is involved in the whole industrial chain,but it basically focuses on its efficacy in downstream drugs,health food and other aspects.Therefore,government should enhance the awareness of patent protection,encourage collaborative innovation in industry-university-research to promote the combination of basic research and market application.Besides,it should provide theoretical support to tackle the problem of short board products,which can promote the transformation of scientific and technological achievements and contribute to the upgrading of Scutellaria Barbata industrial chain.
基金Supported by Agricultural Seed Project in Shandong Province Research in Screening Varieties of Bulk Authentic Chinese Herbal Medicines(NO.2005LZ08-01)Special Issues of Major Technologyin Shandong Province(NO.2006GGll09078)~~
文摘Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress.So the physiological and biochemical characteristics of potted Scutellaria baicalensis Georgi plants were investigated under continuous water stress condition.The results showed that the water content in roots,stems and leaves,together with chlorophyll content of the leaves decreased as the water stress strengthened.Simultaneously,the specific leaf weight increased,and the content of proline and soluble sugar in Scutellaria baicalensis Georgi leaves increased significantly.The changing trends of the baicalin content in the roots,stems and leaves of Scutellaria baicalensis Georgi were different.It increased continuously in roots,while ascended constantly in the stems and leaves during the early days under the water stress,but decreased sharply under the heavy stress.In conclusion,proline and soluble sugar had a close correlation with the drought resistance of Scutellaria baicalensis Georgi.Moderate drought is in favor of synthesizing the secondary metabolites.
文摘The seasonal and source variations of flavonoid contents in Scutellariae Radix were investigated by using the materials collected at the same place in Liaoning Province, China, during three years, 1990~1992, and in seven other provinces in China. Four principal flavonoids in the plant roots, i.e., baicalin, baicalein, wogonin 7 O glucuronide and wogonin were analyzed by using a reversed phase chromatographic system with a chemically bonded ODS silica gel column and phosphate buffer methanol (68:32 and 1:1) as mobile phase. The contents of the four compounds combined in the herb collected at Chengde, Hebei Province are the highest. The results show that the best time for harvesting the roots in Liaoning Province is the end of August.
文摘A new flavone C glycoside, chrysin 8 C β D glucoside (1) and a known phenethyl alcohol glycoside, acteoside (2), were isolated for the first time from the roots of Scutellaria baicalensis (Labiatae).
基金financially supported by the Science and Technology Department of Hebei Province,No.07276101D-46the Education Ministry of Hebei Province,No.2005227
文摘Pretreatment with scutellaria baicalensis stem-leaf total flavonoid has protective effects against ischemia and attenuates myocardial ischemia-reperfusion injury. In this study, rats were given scutellaria baicalensis stem-leaf total flavonoid intragastrically at 50, 100, and 200 mg/kg per day for 7 days before focal cerebral ischemia-reperfusion injury models were established using the suture method. We then determined the protective effects of scutellaria baicalensis stem-leaf total flavon- oid pretreatment on focal cerebral ischemia-reperfusion injury. Results showed that neurological deficit scores increased, infarct volumes enlarged, apoptosis increased and Bcl-2 and Bax protein expression were upregulated at 24 hours after reperfusion. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid at any dose lowered the neurological deficit scores, reduced the infarct volume, prevented apoptosis in hippocampal cells, attenuated neuronal and blood-brain barrier damage and upregulated Bcl-2 protein expression but inhibited Bax protein expression. Doses of 100 and 200 mg/kg were the most efficacious. Our findings indicate that pretreatment with scutel- laria baicalensis stem-leaf total flavonoid at 100 and 200 mg/kg can improve the neurological func- tions and have preventive and protective roles after focal cerebral ischemia-reperfusion injury.
文摘Objective: To investigated the protective potential of ethanol extracts of Scutellaria baicalensis(S. baicalensis) against lipopolysaccharide(LPS)-induced liver injury. Methods: Dried roots of S. baicalensis were extracted with ethanol and concentrated to yield a dry residue. Mice were administered 200 mg/kg of the ethanol extracts orally once daily for one week. Animals were subsequently administered a single dose of LPS(5 mg/kg of body weight, intraperitoneal injection). Both protein and m RNA levels of cytokines, such as tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in liver tissues were evaluated by ELISA assay and quantitative PCR. C yclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB protein levels in liver tissues were analyzed by western blotting. Results: Liver injury induced by LPS signifi cantly increased necrosis factor alpha, interleukin-1β, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor-κB in liver tissues. Treatment with ethanol extracts of S. baicalensis prevented all of these observed changes associated with LPS-induced injury in liver mice.Conclusions: Our study showed that S. baicalensis is potentially protective against LPS-induced liver injury in mice.
文摘Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide.
基金Supported by the National Natural Science Foundation of China(No.81173517No.81322053)
文摘AIM: To observe the attenuation of ethanol extract of Herba Scutellaria barbata (SE) against diabetic retinopathy (DR) and its engaged mechanism. METHODS: C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ, 55 mg/kg) for 5 consecutive days to induce diabetes, The diabetic mice were orally given with SE (100, 200 mg/kg) for lmo at lmo after STZ injection. Blood-retinal barrier (BRB) breakdown was detected by using Evans blue permeation assay. Real-time polymerase chain reaction (RT-PCR), Western blot and immunofiuorescence staining were used to detect mRNA and protein expression. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum contents of tumor necrosis factor-e (TNF-a) and interleukin (IL)-II. RESULTS: SE (100, 200 mg/kg) reversed the breakdown of BRB in STZ-induced diabetic mice. The decreased expression of retinal claudin-1 and claudin-19, which are both tight junction (T J) proteins, was reversed by SE. SE decreased the increased serum contents and retinal mRNA expression of TNF-a and IL-113. SE also decreased the increased retinal expression of intercellular cell adhesion molecule-1 (ICAM-1). SE reduced the increased phosphorylation of nuclear factor kappa B (NFKB) p65 and its subsequent nuclear translocation in retinas from STZ- induced diabetic mice. Results of Western blot and retinal immunofluorescence staining of ionized calcium-binding adapter molecule 1 (Ibal) demonstrated that SE abrogated the activation of microglia cells in STZ-induced diabetic mice. CONCLUSION: SE attenuates the development of DR by inhibiting retinal inflammation and restoring the decreased expression of TJ proteins including claudin-1 and claudin-19.
基金supported by the National Natural Science Foundation of China,No.81403278(to QZ)the Natural Science Foundation of Shaanxi Province of China,No.2017JM8058(to QZ)the Shaanxi Administration of Traditional Chinese Medicine in China,No.15-ZY038(to QZ)
文摘Flavonoids from Huangqin(dried roots of Scutellaria baicalensis Georgi) have anti-inflammatory effects, and are considered useful for treatment of spinal cord injury. To verify this hypothesis, the T9-10 spinal cord segments of rats were damaged using Allen's method to establish a rat spinal cord injury model. Before model establishment, Huangqin flavonoid extraction(12.5 g/kg) was administered intragastrically for 1 week until 28 days after model establishment. Methylprednisolone(30 mg/kg) was injected into the tail vein at 30 minutes after model establishment as a positive control. Basso, Beattie, and Bresnahan locomotor scale scores were used to assess hind limb motor function. Hematoxylin-eosin staining was used to detect pathological changes in the injured spinal cord. Immunofluorescence and western blot assays were performed to measure immunoreactivity and expression levels of brain-derived neurotrophic factor, neuronal marker neurofilament protein, microglial marker CD11 b and astrocyte marker glial fibrillary acidic protein in the injured spinal cord. Huangqin flavonoid extraction markedly reduced spinal cord hematoma, inflammatory cell infiltration and cavities and scars, and increased the Basso, Beattie, and Bresnahan locomotor scale scores; these effects were identical to those of methylprednisolone. Huangqin flavonoid extraction also increased immunoreactivity and expression levels of brain-derived neurotrophic factor and neurofilament protein, and reduced immunoreactivity and expression levels of CD11 b and glial fibrillary acidic protein, in the injured spinal cord. Overall, these data suggest that Huangqin flavonoid extraction can promote recovery of spinal cord injury by inducing brain-derived neurotrophic factor and neurofilament protein expression, reducing microglia activation and regulating reactive astrocytes.