The granitoids widely distributed in South China are characterized by multi-stage evolution via episodic intrusions,in a complex geodynamic setting.Since granites have high radioactive heat generation and excellent th...The granitoids widely distributed in South China are characterized by multi-stage evolution via episodic intrusions,in a complex geodynamic setting.Since granites have high radioactive heat generation and excellent thermal conductivity,a deep moderate-to high-temperature geothermal system can be formed in the presence of high-quality,fissured granite geothermal reservoirs and thermal insulation with appropriate cap rocks.The key to exploring deep geothermal resources is to identify high-quality fissured granite geothermal reservoirs of a certain scale in a thermal anomaly zone with high background heatflow values.To determine the controlling effects of the distribution and development characteristics of granite geothermal reservoirs on the generation and enrichment of deep geothermal resources,this study analyzed the characteristics of the geothermal reservoirs in the Huangshadong geothermal field in the Yuezhong Depression,Guangdong Province,and their controlling effects on the formation of geothermal resources.The results are as follows.The hydrothermal system in the Huangshadong geothermal field mainly distributed in the contact zones between magmatic plutons and surrounding rocks,is significantly controlled by faults,followed by neoid volcanic apparatus and magmatic activities.That is,the geothermal system therein is under joint control of structures and magmas.Moreover,fractured zones of neoid transtensional faults conduct the geothermal water in the hydrothermal system and control its shallow discharge.Therefore,the hydrothermal system in the study area is characterized by the control of transpressional tectonic zone and volcanic apparatus,and geothermal water conduction through fractured zones of transtensional faults.展开更多
Dense distribution of granites and surrounding hot springs, the high anomalous heating rates of geothermal fluids and the high geothermal gradients in shallow crust in Southeast China are revealed by previous geotherm...Dense distribution of granites and surrounding hot springs, the high anomalous heating rates of geothermal fluids and the high geothermal gradients in shallow crust in Southeast China are revealed by previous geothermal explorations. However, there have always been debates on the genesis of geothermal anomalies of Southeast China. It is imperative to look into the genesis mechanism of geothermal anomalies through selecting a typical geothermal field, and constructing fine crustal thermostructure. In this study, in-depth excavation is implemented for the previous data of geophysical exploration and deep drilling exploration in the Huangshadong area. We synthetically analyze the results of radioactive heat productions(RHPs), thermophysical properties of rocks and audio-frequency magnetotellurics(AMT) sounding. This study concludes that the coefficient of radioactive heat generation(RHG) of crustal rocks and conduction heat of concealed granites is the main formation mechanism of geothermal anomalies of South China, where occurs a Great Granite Province. There is a regional indicating implication for the genesis of geothermal anomalies, taking the Huangshadong geothermal field as a typical example. It is also an important reference to guide the exploration, evaluation, development and utilization of geothermal resources in this region.展开更多
基金This work was funded by a number of scientific research programs,including subjects entitled Analysis and Geothermal Reservoir Stimulation Methods of Deep High-temperature Geothermal Systems in East China(No.:2021YFA0716004)Evaluation and Optimal Target Selection of Deep Geothermal Resources in the Igneous Province in South China(No.:2019YFC0604903)+1 种基金the National Key Research and Development Program of China,a project entitled Deep Geological Processes and Resource Effects of Basins(No.:U20B6001)the Joint Fund Program of the National Natural Science Foundation of China and Sinopec,and a project entitled Siting and Target Evaluation of Deep Geothermal Resources in Key Areas of Southeastern China(No.:P20041-1)of the Sinopec Science and Technology Research Program.
文摘The granitoids widely distributed in South China are characterized by multi-stage evolution via episodic intrusions,in a complex geodynamic setting.Since granites have high radioactive heat generation and excellent thermal conductivity,a deep moderate-to high-temperature geothermal system can be formed in the presence of high-quality,fissured granite geothermal reservoirs and thermal insulation with appropriate cap rocks.The key to exploring deep geothermal resources is to identify high-quality fissured granite geothermal reservoirs of a certain scale in a thermal anomaly zone with high background heatflow values.To determine the controlling effects of the distribution and development characteristics of granite geothermal reservoirs on the generation and enrichment of deep geothermal resources,this study analyzed the characteristics of the geothermal reservoirs in the Huangshadong geothermal field in the Yuezhong Depression,Guangdong Province,and their controlling effects on the formation of geothermal resources.The results are as follows.The hydrothermal system in the Huangshadong geothermal field mainly distributed in the contact zones between magmatic plutons and surrounding rocks,is significantly controlled by faults,followed by neoid volcanic apparatus and magmatic activities.That is,the geothermal system therein is under joint control of structures and magmas.Moreover,fractured zones of neoid transtensional faults conduct the geothermal water in the hydrothermal system and control its shallow discharge.Therefore,the hydrothermal system in the study area is characterized by the control of transpressional tectonic zone and volcanic apparatus,and geothermal water conduction through fractured zones of transtensional faults.
基金financially supported by the China Geological Survey (No. 1212011220014)。
文摘Dense distribution of granites and surrounding hot springs, the high anomalous heating rates of geothermal fluids and the high geothermal gradients in shallow crust in Southeast China are revealed by previous geothermal explorations. However, there have always been debates on the genesis of geothermal anomalies of Southeast China. It is imperative to look into the genesis mechanism of geothermal anomalies through selecting a typical geothermal field, and constructing fine crustal thermostructure. In this study, in-depth excavation is implemented for the previous data of geophysical exploration and deep drilling exploration in the Huangshadong area. We synthetically analyze the results of radioactive heat productions(RHPs), thermophysical properties of rocks and audio-frequency magnetotellurics(AMT) sounding. This study concludes that the coefficient of radioactive heat generation(RHG) of crustal rocks and conduction heat of concealed granites is the main formation mechanism of geothermal anomalies of South China, where occurs a Great Granite Province. There is a regional indicating implication for the genesis of geothermal anomalies, taking the Huangshadong geothermal field as a typical example. It is also an important reference to guide the exploration, evaluation, development and utilization of geothermal resources in this region.