The dissolved organic carbon(DOC)in the surface water of Huguangyan Maar Lake was continuously monitored based on once per week sampling frequency of 4 locations from June 2018 to May 2019.The DOC concentrations and i...The dissolved organic carbon(DOC)in the surface water of Huguangyan Maar Lake was continuously monitored based on once per week sampling frequency of 4 locations from June 2018 to May 2019.The DOC concentrations and its seasonal variation were discussed by correlating with the rainfall,water temperature,and p H of lake water.The results showed that the weekly DOC varied from 8.15 to 32.65 mg/L with an annual average concentration of 17.96 mg/L.There was a significant difference in the average DOC concentrations between the rainy and dry seasons as the monthly average DOC concentration was 21.72 mg/L for the wet season compared to the dry season concentration of 14.21 mg/L.The rainfall shows a significant effect on the DOC concentration of lake water,as DOC concentration was much high during the wet season.There were no significant spatial variations in the average monthly concentration among the four sampling locations except occasional variation during the wet season.The reason for the wet season DOC differences among four sampling locations is likely due to the uneven runoff and underground water inputs and the relatively slow circulation of lake water.Finally,the seasonal fluctuation of DOC concentration in this closed lake water suggests that dissolved soil organic matter inputs through the rainfall related to surface runoff and subsurface infiltration from the surrounding watershed land is important to the primary production and organic matter deposition in the lake sediments.展开更多
The Huguangyan Maar Lake(HML)(21°9'N,110°17'E),situated on the Leizhou Peninsula in the southernmost of China's Mainland,is the deepest recent crater lake among the identified volcanic structures i...The Huguangyan Maar Lake(HML)(21°9'N,110°17'E),situated on the Leizhou Peninsula in the southernmost of China's Mainland,is the deepest recent crater lake among the identified volcanic structures in the Leiqiong Volcanic Field.The bi-lobate lake.展开更多
Huguangyan Maar Lake is a typical maar lake in the southeast of China. It is well preserved and not disturbed by anthropogenic activities. In this study, microbial community structures in sediment and water samples fr...Huguangyan Maar Lake is a typical maar lake in the southeast of China. It is well preserved and not disturbed by anthropogenic activities. In this study, microbial community structures in sediment and water samples from Huguangyan Maar Lake were investigated using a high-throughput sequencing method. We found significant differences between the microbial community compositions of the water and the sediment. The sediment samples contained more diverse Bacteria and Archaea than did the water samples. Actinobacteria, Betaproteobacteria, Cyanobacteria, and Deltaproteobacteria predominated in the water samples while Deltaproteobacteria, Anaerolineae, Nitrospira, and Dehalococcoidia were the major bacterial groups in the sediment. As for Archaea, Woesearchaeota (DHVEG-6), unclassified Archaea, and Deep Sea Euryarchaeotic Group were detected at higher abundances in the water, whereas the Miscellaneous Crenarchaeotic Group, Thermoplasmata, and Methanomicrobia were significantly more abundant in the sediment. Interactions between Bacteria and Archaea were common in both the water column and the sediment. The concentrations of major nutrients (NO^3-, PO4^3-, SiO3^2- and NH4^+) shaped the microbial population structures in the water. At the higher phylogenetic levels including phylum and class, many of the dominant groups were those that were also abundant in other lakes;however, novel microbial populations (unclassified) were often seen at the lower phylogenetic levels. Our study lays a foundation for examining microbial biogeochemical cycling in sequestered lakes or reservoirs.展开更多
A high-resolution pollen record of the past 13000 a from Huguangyan Maar Lake reveals the vegetation and environment changes in southern China during the Holocene. It shows that (i) pollen percentage of trees and shru...A high-resolution pollen record of the past 13000 a from Huguangyan Maar Lake reveals the vegetation and environment changes in southern China during the Holocene. It shows that (i) pollen percentage of trees and shrubs reached 56% during the early Holocene (11600―7800 cal a BP), of which the pollen percentage of tropical trees reached a maximum at 9500―8000 cal a BP, reflecting a hot and wet envi- ronment; (ii) during the mid-Holocene (7800―4200 cal a BP), the pollen percentage of montane conif- erous trees and herbs increased, while the percentage of tropical-subtropical trees decreased, indi- cating lower temperature and humidity; (iii) in the late Holocene spanning from 4200 to 350 cal a BP, the pollen percentage of herbs and montane conifer increased significantly, indicating a marked decrease of temperature and humidity. Our pollen data reveal that the time period 9500―8000 cal a BP in south- ern China represents a climatic optimum for the Holocene characterized by hot and wet conditions. This is consistent with the Holocene optimum found in lower latitude regions globally. We speculate that strong insolation might cause the northward migration of the ITCZ and subtropical summer mon- soon front, which resulted in an early Holocene optimum in the Huguangyan area. The dry tendency and climate fluctuations of the middle and late Holocene could be associated with a decrease in solar insolation and frequent ENSO event.展开更多
对湖光岩玛珥湖沉积物全新世粒度参数、550℃烧失量和Ti元素含量的变化特征研究后认为:粒度频率特征曲线指示湖光岩玛珥湖沉积物的外源输入部分主要来自其小流域;沉积物粒径的变化主要受降雨量,而不是湖泊水位波动的控制;较粗的粒径指...对湖光岩玛珥湖沉积物全新世粒度参数、550℃烧失量和Ti元素含量的变化特征研究后认为:粒度频率特征曲线指示湖光岩玛珥湖沉积物的外源输入部分主要来自其小流域;沉积物粒径的变化主要受降雨量,而不是湖泊水位波动的控制;较粗的粒径指示降雨量增加,较细的粒径指示降雨量降低.湛江地区全新世早期季风强盛,6085 a B.P.以后,季风显著减弱.湖光岩沉积物记录的全新世中期季风迅速减弱的发生时间与全球很多地质载体记录的全新世中期季风迅速减弱时间都非常接近,体现了湛江地区全新世季风演化的全球性.湛江地区6085 a B.P.以后的季风迅速减弱、气候转干很可能与厄尔尼诺活动增强有关.2000 a B.P.以后,粒度参数、550℃烧失量和Ti元素含量的变幅明显增加与人类活动的影响有关,是人类活动和气候因素共同作用的结果.展开更多
基金the Special Talent Support Program of Guangdong Ocean University(No.R17001)the Project of Marine geochemistry and climate change of Guangdong Ocean University(No.002026002004)。
文摘The dissolved organic carbon(DOC)in the surface water of Huguangyan Maar Lake was continuously monitored based on once per week sampling frequency of 4 locations from June 2018 to May 2019.The DOC concentrations and its seasonal variation were discussed by correlating with the rainfall,water temperature,and p H of lake water.The results showed that the weekly DOC varied from 8.15 to 32.65 mg/L with an annual average concentration of 17.96 mg/L.There was a significant difference in the average DOC concentrations between the rainy and dry seasons as the monthly average DOC concentration was 21.72 mg/L for the wet season compared to the dry season concentration of 14.21 mg/L.The rainfall shows a significant effect on the DOC concentration of lake water,as DOC concentration was much high during the wet season.There were no significant spatial variations in the average monthly concentration among the four sampling locations except occasional variation during the wet season.The reason for the wet season DOC differences among four sampling locations is likely due to the uneven runoff and underground water inputs and the relatively slow circulation of lake water.Finally,the seasonal fluctuation of DOC concentration in this closed lake water suggests that dissolved soil organic matter inputs through the rainfall related to surface runoff and subsurface infiltration from the surrounding watershed land is important to the primary production and organic matter deposition in the lake sediments.
基金financially supported by the China Geological Survey(grant no.1212011120045)the NSFC(grant no.41274074)
文摘The Huguangyan Maar Lake(HML)(21°9'N,110°17'E),situated on the Leizhou Peninsula in the southernmost of China's Mainland,is the deepest recent crater lake among the identified volcanic structures in the Leiqiong Volcanic Field.The bi-lobate lake.
基金Supported by the National Natural Science Foundation of China(Nos.41576123,41706129)the Guangdong Natural Science Foundation(Nos.2015A030313326,2016A030312004)+2 种基金the International Science and Technology Cooperation Project(No.GASI-IPOVI-04)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.GDOU2016050243)the Program for Scientific Research Start-Up Funds of Guangdong Ocean University(No.E15030)
文摘Huguangyan Maar Lake is a typical maar lake in the southeast of China. It is well preserved and not disturbed by anthropogenic activities. In this study, microbial community structures in sediment and water samples from Huguangyan Maar Lake were investigated using a high-throughput sequencing method. We found significant differences between the microbial community compositions of the water and the sediment. The sediment samples contained more diverse Bacteria and Archaea than did the water samples. Actinobacteria, Betaproteobacteria, Cyanobacteria, and Deltaproteobacteria predominated in the water samples while Deltaproteobacteria, Anaerolineae, Nitrospira, and Dehalococcoidia were the major bacterial groups in the sediment. As for Archaea, Woesearchaeota (DHVEG-6), unclassified Archaea, and Deep Sea Euryarchaeotic Group were detected at higher abundances in the water, whereas the Miscellaneous Crenarchaeotic Group, Thermoplasmata, and Methanomicrobia were significantly more abundant in the sediment. Interactions between Bacteria and Archaea were common in both the water column and the sediment. The concentrations of major nutrients (NO^3-, PO4^3-, SiO3^2- and NH4^+) shaped the microbial population structures in the water. At the higher phylogenetic levels including phylum and class, many of the dominant groups were those that were also abundant in other lakes;however, novel microbial populations (unclassified) were often seen at the lower phylogenetic levels. Our study lays a foundation for examining microbial biogeochemical cycling in sequestered lakes or reservoirs.
基金Supported by the National Natural Science Foundation of China for Distinguished Youth Scholar (Grant No. 40325002)the Key Research Project of the Knowledge Innovation Program of CAS (Grant Nos. KZCX3-SW-145 and KZCX2-YW-117)+1 种基金the National Basic Research Program of China (Grant No. 2005CB422002-2)the National Natural Science Foundation of China (Grant No. 40331011)
文摘A high-resolution pollen record of the past 13000 a from Huguangyan Maar Lake reveals the vegetation and environment changes in southern China during the Holocene. It shows that (i) pollen percentage of trees and shrubs reached 56% during the early Holocene (11600―7800 cal a BP), of which the pollen percentage of tropical trees reached a maximum at 9500―8000 cal a BP, reflecting a hot and wet envi- ronment; (ii) during the mid-Holocene (7800―4200 cal a BP), the pollen percentage of montane conif- erous trees and herbs increased, while the percentage of tropical-subtropical trees decreased, indi- cating lower temperature and humidity; (iii) in the late Holocene spanning from 4200 to 350 cal a BP, the pollen percentage of herbs and montane conifer increased significantly, indicating a marked decrease of temperature and humidity. Our pollen data reveal that the time period 9500―8000 cal a BP in south- ern China represents a climatic optimum for the Holocene characterized by hot and wet conditions. This is consistent with the Holocene optimum found in lower latitude regions globally. We speculate that strong insolation might cause the northward migration of the ITCZ and subtropical summer mon- soon front, which resulted in an early Holocene optimum in the Huguangyan area. The dry tendency and climate fluctuations of the middle and late Holocene could be associated with a decrease in solar insolation and frequent ENSO event.
文摘对湖光岩玛珥湖沉积物全新世粒度参数、550℃烧失量和Ti元素含量的变化特征研究后认为:粒度频率特征曲线指示湖光岩玛珥湖沉积物的外源输入部分主要来自其小流域;沉积物粒径的变化主要受降雨量,而不是湖泊水位波动的控制;较粗的粒径指示降雨量增加,较细的粒径指示降雨量降低.湛江地区全新世早期季风强盛,6085 a B.P.以后,季风显著减弱.湖光岩沉积物记录的全新世中期季风迅速减弱的发生时间与全球很多地质载体记录的全新世中期季风迅速减弱时间都非常接近,体现了湛江地区全新世季风演化的全球性.湛江地区6085 a B.P.以后的季风迅速减弱、气候转干很可能与厄尔尼诺活动增强有关.2000 a B.P.以后,粒度参数、550℃烧失量和Ti元素含量的变幅明显增加与人类活动的影响有关,是人类活动和气候因素共同作用的结果.