Over the past years natural products and/or their derivatives have continued to provide cancer chemotherapeutics. Glycosides derivatives of emodin are known to possess anticancer activities. An in silico study was car...Over the past years natural products and/or their derivatives have continued to provide cancer chemotherapeutics. Glycosides derivatives of emodin are known to possess anticancer activities. An in silico study was carried out to evaluate emodin derivatives as inhibitors of Arylamine N-Acetyltransferase 2, Cyclooxygenase 2 and Topoisomerase 1 enzymes, predict their pharmacokinetics and explore their bonding modes. Molecular docking study suggested that D2, D5, D6 and D9 to be potent inhibitors of NAT2, while D8 was suggested to be a potent inhibitor of TOP1. Derivatives D2, D5, D6 and D9 bind to the same pocket with different binding conformation. Pharmacokinetic study suggested that selected emodin derivatives can be potential cancer chemotherapeutic agent. Physicochemical parameters such density, balaban index, surface tension, logP and molar reflectance correlated to compounds activity. These finding provides a potential strategy towards developing NAT2 and TOP1 inhibitors.展开更多
Cryopreserved human hepatocytes were used to investigate the role of arylamine N-acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N-acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman alle...Cryopreserved human hepatocytes were used to investigate the role of arylamine N-acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N-acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N-acetylation was measured by high performance liquid chromatography. INH N-acetylation rates in vitro exhibited a robust and highly significant (P<0.005) NAT2 phenotype-dependent metabolism. N-acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly (P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.展开更多
Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to primary arylamines and play a very important role in the metabolism and bioactivation of drugs ...Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to primary arylamines and play a very important role in the metabolism and bioactivation of drugs and carcinogens. Experiments revealed that His-107 was likely the residues responsible for mediating acetyl transfer. The full catalytic mechanism of acetylation process has been examined by density functional theory. The results indicate that, if the acetyl group is directly transferred from the donor, p-nitrophenyl acetate, to the acceptor, cysteine, the high activation energy will be a great hindrance. These energies have dropped in a little range of 20-25 kJ/mol when His-107 assisted the transfer process. However, when protonated His-107 mediated the reaction, the activation energies have been dropped about 73-85 kJ/mol. Our calculations strongly supported an enzyme acetylation mechanism that experiences a thiolate-imidazolium pair, and verified the presumption from experiments.展开更多
文摘Over the past years natural products and/or their derivatives have continued to provide cancer chemotherapeutics. Glycosides derivatives of emodin are known to possess anticancer activities. An in silico study was carried out to evaluate emodin derivatives as inhibitors of Arylamine N-Acetyltransferase 2, Cyclooxygenase 2 and Topoisomerase 1 enzymes, predict their pharmacokinetics and explore their bonding modes. Molecular docking study suggested that D2, D5, D6 and D9 to be potent inhibitors of NAT2, while D8 was suggested to be a potent inhibitor of TOP1. Derivatives D2, D5, D6 and D9 bind to the same pocket with different binding conformation. Pharmacokinetic study suggested that selected emodin derivatives can be potential cancer chemotherapeutic agent. Physicochemical parameters such density, balaban index, surface tension, logP and molar reflectance correlated to compounds activity. These finding provides a potential strategy towards developing NAT2 and TOP1 inhibitors.
基金supported by National Institutes of Health grants R25-CA134283 and P20-GM113226(USA)
文摘Cryopreserved human hepatocytes were used to investigate the role of arylamine N-acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N-acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N-acetylation was measured by high performance liquid chromatography. INH N-acetylation rates in vitro exhibited a robust and highly significant (P<0.005) NAT2 phenotype-dependent metabolism. N-acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly (P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.
基金Project supported by the Youth Natural Science Foundation of Yantai Normal University (No. 042902), the Youth Natural Science Foundation of Shandong Provincial Education Department (No. 200139) and the National Natural Scientific Foundation of China (Nos. 20173032, 10404030 and 20373071).
文摘Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to primary arylamines and play a very important role in the metabolism and bioactivation of drugs and carcinogens. Experiments revealed that His-107 was likely the residues responsible for mediating acetyl transfer. The full catalytic mechanism of acetylation process has been examined by density functional theory. The results indicate that, if the acetyl group is directly transferred from the donor, p-nitrophenyl acetate, to the acceptor, cysteine, the high activation energy will be a great hindrance. These energies have dropped in a little range of 20-25 kJ/mol when His-107 assisted the transfer process. However, when protonated His-107 mediated the reaction, the activation energies have been dropped about 73-85 kJ/mol. Our calculations strongly supported an enzyme acetylation mechanism that experiences a thiolate-imidazolium pair, and verified the presumption from experiments.