Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics ...Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.展开更多
Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata...Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024).展开更多
Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo...Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocyt...Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.展开更多
Objective To study the role of IFN-γ/IL-10 cytokines protein expression of human decidual stromal cells(DSC) vitro. on IL-10 receptor gene and in human early pregnancy in vitro. Methods Human DSC was isolated and c...Objective To study the role of IFN-γ/IL-10 cytokines protein expression of human decidual stromal cells(DSC) vitro. on IL-10 receptor gene and in human early pregnancy in vitro. Methods Human DSC was isolated and cultured in vitro, and the expression of IL-10R1 and IL-10R2 gene was analyzed after cells had been treated with TH2-type cytokines IL-10 and TH1-type cytokines IFN-γ within 60 rain with semiquantitative reverse transcriptase-PCR, then the influence of IL-10 and IFN-γ on expression of IL-10R protein was examined by first trimester DSC using flow cytometry. In addition, the vitality of DSC was detected by MTT. Results IL-10R1 mRNA levels of DSC treated with IL-10 (10 ng/ml) reached the peak level within 15 rain, and were significantly lower at 30 rain, then were not detected at 45 min. The expression of IL-10R1 were induced to moderate level by IFN-γ(10 ng/ml) within 30 rain, and reduced to undetected levels at 60 min. There was no significant difference of IL-10R2 expression (P〉0.05) between treated and not with the abovementioned cytokines. The IL-10R protein expression and vitality of DSC were significantly enhanced by IL-10 (10 ng/ml) and IFN-γ (10 ng/ml) which treated DSC 48 h (P〈0.05). Coneclusion IL-10 and IFN-γ may play an important role of biologic function in early pregnancy by influencing IL-10R expression of DSC.展开更多
目的探究血清晚期糖基化终产物受体(RAGE)、高迁移率族蛋白B1(high mobility group protein B1,HMGB1)水平与重症肺炎(SP)急性呼吸窘迫综合征(ARDS)发病及γ-干扰素(IFN-γ)/白细胞介素4(IL-4)变化的关系。方法前瞻性选取2020年3月至202...目的探究血清晚期糖基化终产物受体(RAGE)、高迁移率族蛋白B1(high mobility group protein B1,HMGB1)水平与重症肺炎(SP)急性呼吸窘迫综合征(ARDS)发病及γ-干扰素(IFN-γ)/白细胞介素4(IL-4)变化的关系。方法前瞻性选取2020年3月至2022年2月我院收治的100例SP患儿为研究对象,根据患儿是否发生继发性ARDS将患儿分为ARDS组(n=56)和对照组(n=44),收集患儿一般资料,采集外周血以酶联免疫吸附法进行RAGE、HMGB1、IFN-γ和IL-4表达水平检测,采用多因素logistic回归分析SP患儿继发ARDS的影响因素,采用Pearson相关性分析其与IFN-γ/IL-4的相关性,并采用受试者工作曲线(ROC)分析RAGE、HMGB1表达对SP患儿继发ARDS的预测价值。结果两组SP患儿性别、年龄、体温以及发病季节之间无显著差异,ARDS组致病菌种类多于对照组,PaO_(2)/FiO_(2)和APS评分、血清RAGE、HMGB1、IFN-γ和IL-4表达水平以及IFN-γ/IL-4比值均高于对照组(P<0.05)。经多因素logistic回归分析可知,致病菌种类、PaO_(2)/FiO_(2)、RAGE、HMGB1表达、IFN-γ、IL-4和IFN-γ/IL-4均为SP患儿继发ARDS的影响因素。经Pearson相关检验,SP患儿血清RAGE、HMGB1表达水平与IFN-γ、IL-4和IFN-γ/IL-4均呈正相关(P<0.05)。经ROC曲线分析可得,血清RAGE、HMGB1水平预测SP患儿发生ARDS的AUC分别为0.707和0.750,灵敏度分别为73.2%、64.3%,特异度分别为68.2%、77.3%,两者联合预测的AUC为0.848,灵敏度和特异度分别为80.4%和81.8%。结论SP继发ARDS患儿血清中RAGE、HMGB1表达水平较高,与IFN-γ/IL-4呈正相关,监测患儿血清RAGE、HMGB1表达对SP患儿继发ARDS的风险有一定的预测价值。展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
文摘Food Science and Human Wellness(FSHW ISSN:2213-4530,CN 10-1750/TS)publishes original research papers demonstrating the latest advancement of multidisci-plinary subjects related to food science and human health.Topics may include but not limited to:nutriology,biochemistry,microbiology,immunology and toxicology.
文摘Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024).
基金supported by the Christiane and Claudia Hempel Foundation for Regenerative Medicineby the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung(to PK)。
文摘Introduction to human endogenous retrovirus type-W(HERV-W): Genomic inheritance from the past includes retroviral sequences that have been stably incorporated into our genomes and account for up to 8% of human DNA.
文摘Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by the National Natural Science Foundation of China,No.82301403(to DZ)。
文摘Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.
基金This study was supported by research grant from National Natural Science Foundation of China (No.30572446), research grants from Modern Biology & Pharmacy Foundation of ShanghaiScience Committee (No.02D219115) and Fudan University (985 Program).
文摘Objective To study the role of IFN-γ/IL-10 cytokines protein expression of human decidual stromal cells(DSC) vitro. on IL-10 receptor gene and in human early pregnancy in vitro. Methods Human DSC was isolated and cultured in vitro, and the expression of IL-10R1 and IL-10R2 gene was analyzed after cells had been treated with TH2-type cytokines IL-10 and TH1-type cytokines IFN-γ within 60 rain with semiquantitative reverse transcriptase-PCR, then the influence of IL-10 and IFN-γ on expression of IL-10R protein was examined by first trimester DSC using flow cytometry. In addition, the vitality of DSC was detected by MTT. Results IL-10R1 mRNA levels of DSC treated with IL-10 (10 ng/ml) reached the peak level within 15 rain, and were significantly lower at 30 rain, then were not detected at 45 min. The expression of IL-10R1 were induced to moderate level by IFN-γ(10 ng/ml) within 30 rain, and reduced to undetected levels at 60 min. There was no significant difference of IL-10R2 expression (P〉0.05) between treated and not with the abovementioned cytokines. The IL-10R protein expression and vitality of DSC were significantly enhanced by IL-10 (10 ng/ml) and IFN-γ (10 ng/ml) which treated DSC 48 h (P〈0.05). Coneclusion IL-10 and IFN-γ may play an important role of biologic function in early pregnancy by influencing IL-10R expression of DSC.
文摘目的探究血清晚期糖基化终产物受体(RAGE)、高迁移率族蛋白B1(high mobility group protein B1,HMGB1)水平与重症肺炎(SP)急性呼吸窘迫综合征(ARDS)发病及γ-干扰素(IFN-γ)/白细胞介素4(IL-4)变化的关系。方法前瞻性选取2020年3月至2022年2月我院收治的100例SP患儿为研究对象,根据患儿是否发生继发性ARDS将患儿分为ARDS组(n=56)和对照组(n=44),收集患儿一般资料,采集外周血以酶联免疫吸附法进行RAGE、HMGB1、IFN-γ和IL-4表达水平检测,采用多因素logistic回归分析SP患儿继发ARDS的影响因素,采用Pearson相关性分析其与IFN-γ/IL-4的相关性,并采用受试者工作曲线(ROC)分析RAGE、HMGB1表达对SP患儿继发ARDS的预测价值。结果两组SP患儿性别、年龄、体温以及发病季节之间无显著差异,ARDS组致病菌种类多于对照组,PaO_(2)/FiO_(2)和APS评分、血清RAGE、HMGB1、IFN-γ和IL-4表达水平以及IFN-γ/IL-4比值均高于对照组(P<0.05)。经多因素logistic回归分析可知,致病菌种类、PaO_(2)/FiO_(2)、RAGE、HMGB1表达、IFN-γ、IL-4和IFN-γ/IL-4均为SP患儿继发ARDS的影响因素。经Pearson相关检验,SP患儿血清RAGE、HMGB1表达水平与IFN-γ、IL-4和IFN-γ/IL-4均呈正相关(P<0.05)。经ROC曲线分析可得,血清RAGE、HMGB1水平预测SP患儿发生ARDS的AUC分别为0.707和0.750,灵敏度分别为73.2%、64.3%,特异度分别为68.2%、77.3%,两者联合预测的AUC为0.848,灵敏度和特异度分别为80.4%和81.8%。结论SP继发ARDS患儿血清中RAGE、HMGB1表达水平较高,与IFN-γ/IL-4呈正相关,监测患儿血清RAGE、HMGB1表达对SP患儿继发ARDS的风险有一定的预测价值。
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.