A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and e...A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and error analysis method(CREAM) to take into account the characteristics of shipping operations. After the influencing factors are identified, Markov method is used to calculate the values of human reliability. The proposed method does not rely on the involvement of experts in the field of human factor nor depend on historical accidents or human error statistics. It is applied to the case of the crew on board of an ocean going dry bulk carrier. The caculated results agree with the actual case, which verifies the validity of the model.展开更多
The general human factors analysis analyzes human functions, effects and influence in a system. But in a narrow sense, it analyzes human influence upon the reliability of a system, it includes traditional human reliab...The general human factors analysis analyzes human functions, effects and influence in a system. But in a narrow sense, it analyzes human influence upon the reliability of a system, it includes traditional human reliability analysis, human error analysis, man-machine interface analysis, human character analysis, and others. A software development project in software engineering is successful or not to be completely determined by human factors. In this paper, we discuss the human factors intensions, declare the importance of human factors analysis for software engineering by listed some instances. At last, we probe preliminarily into the mentality that a practitioner in software engineering should possess. Key words human factors analysis - software engineering - software reliability CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60173013)Biography: Xu Ren-zuo (1946-), male, Professor, research direction: software engineering, software reliability engineering, software safety and software testing.展开更多
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
Human Reliability Analysis(HRA)is an important part in safety assessment of a large complex system.Human Cognitive Reliability(HCR)model is a method of evaluating the probability that operators fail to complete during...Human Reliability Analysis(HRA)is an important part in safety assessment of a large complex system.Human Cognitive Reliability(HCR)model is a method of evaluating the probability that operators fail to complete during diagnostic decision making within a limited time,which is widely used in HRA.In the application of this method,cognitive patterns of humans are required to be considered and classified,and this process often relies on the evaluation opinions of experts which is highly subjective and uncertain.How to effectively express and process this uncertain and subjective information plays a critical role in improving the accuracy and applicability of HCR.In this paper,a new model was proposed to deal with the uncertain information which exists in the processes of cognitive pattern classification in HCR.First,an evaluation panel was constructed based on expert opinions and processing including setting corresponding anchor points and qualitative indicators of different cognitive patterns,and mapping them to fuzzy numbers and unit intervals.Second,based on the evaluation panel,different analysts judge the cognitive pattern types of actual specific events and provide the level of confidence he or she has in the judgments.Finally,the evaluation opinions of multiple analysts were expressed and fused based on the Dempster-Shafer Evidence Theory(DSET),and the fused results were applied to the HCR model to obtain the Human Error Probability(HEP).A case study was used to demonstrate the procedure and effectiveness of the proposed method.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability st...Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability statistics in order to analyze, predict, reduce and prevent human errors. Firstly, the quantitative analysis model of HRA is proposed based on Markov process theory by using human error probability(HEP) and error correction cycle(ECC) as parameters. And human reliability evaluation criterion is built. Then, the HRA process considering error correction is proposed based on cognitive reliability and error analysis method(CREAM). Finally, according to the characteristics of armored vehicle system, common performance condition(CPC) in CREAM is improved.A reliability impact index is characterized by the overall contexts of tasks. Human reliability evaluation criterion of armored vehicle system is formulated. And the result of HRA is obtained based on the method presented in this paper. In addition, the relative weights are estimated by combining scale of 10/10—18/2 and analytical hierarchy process(AHP), and the triangular fuzzy number considering confidence factor and optimism index is adopted in order to reduce the subjectivity. The analysis results show that the method presented in this paper is reasonable and feasible. Meantime, the method can provide guidance for human reliability analysis of other weapon systems.展开更多
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ...Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.展开更多
This paper discusses some issues on human reliability model of time dependent human behavior. Some results of the crew reliability experiment on Tsinghua training simulator in China are given, Meanwhile, a case of ca...This paper discusses some issues on human reliability model of time dependent human behavior. Some results of the crew reliability experiment on Tsinghua training simulator in China are given, Meanwhile, a case of calculation for human error probability during anticipated transient without scram (ATWS) based on the data drew from the recent experiment is offered.展开更多
为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不...为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不确定性是必要的;使用模糊逻辑方法处理行为模式各个影响因素的不确定性,根据Hanaman决策树构建模糊推理规则,利用系统人为行为可靠性程序(systematic human action reliability procedure,SHARP)方法所提供的人为差错概率区间确定人为差错概率的隶属度函数。结果表明:该方法考虑了任务场景的不确定性,可以得到人为差错概率的精确值,满足人机系统概率风险评估的需要。展开更多
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB046804)National Natural Science Foundation of China(No.51239008)+1 种基金Foundation of State Key Laboratory of Marine Engineering of Shanghai Jiaotong UniversityFoundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)
文摘A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and error analysis method(CREAM) to take into account the characteristics of shipping operations. After the influencing factors are identified, Markov method is used to calculate the values of human reliability. The proposed method does not rely on the involvement of experts in the field of human factor nor depend on historical accidents or human error statistics. It is applied to the case of the crew on board of an ocean going dry bulk carrier. The caculated results agree with the actual case, which verifies the validity of the model.
文摘The general human factors analysis analyzes human functions, effects and influence in a system. But in a narrow sense, it analyzes human influence upon the reliability of a system, it includes traditional human reliability analysis, human error analysis, man-machine interface analysis, human character analysis, and others. A software development project in software engineering is successful or not to be completely determined by human factors. In this paper, we discuss the human factors intensions, declare the importance of human factors analysis for software engineering by listed some instances. At last, we probe preliminarily into the mentality that a practitioner in software engineering should possess. Key words human factors analysis - software engineering - software reliability CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60173013)Biography: Xu Ren-zuo (1946-), male, Professor, research direction: software engineering, software reliability engineering, software safety and software testing.
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by Shanghai Natural Science Foundation(Grant No.19ZR1420700)sponsored by Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Human Reliability Analysis(HRA)is an important part in safety assessment of a large complex system.Human Cognitive Reliability(HCR)model is a method of evaluating the probability that operators fail to complete during diagnostic decision making within a limited time,which is widely used in HRA.In the application of this method,cognitive patterns of humans are required to be considered and classified,and this process often relies on the evaluation opinions of experts which is highly subjective and uncertain.How to effectively express and process this uncertain and subjective information plays a critical role in improving the accuracy and applicability of HCR.In this paper,a new model was proposed to deal with the uncertain information which exists in the processes of cognitive pattern classification in HCR.First,an evaluation panel was constructed based on expert opinions and processing including setting corresponding anchor points and qualitative indicators of different cognitive patterns,and mapping them to fuzzy numbers and unit intervals.Second,based on the evaluation panel,different analysts judge the cognitive pattern types of actual specific events and provide the level of confidence he or she has in the judgments.Finally,the evaluation opinions of multiple analysts were expressed and fused based on the Dempster-Shafer Evidence Theory(DSET),and the fused results were applied to the HCR model to obtain the Human Error Probability(HEP).A case study was used to demonstrate the procedure and effectiveness of the proposed method.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金the Technical Basis Projects of China’s Ministry of Industry and Information Technology(No.ZQ092012B003)
文摘Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability statistics in order to analyze, predict, reduce and prevent human errors. Firstly, the quantitative analysis model of HRA is proposed based on Markov process theory by using human error probability(HEP) and error correction cycle(ECC) as parameters. And human reliability evaluation criterion is built. Then, the HRA process considering error correction is proposed based on cognitive reliability and error analysis method(CREAM). Finally, according to the characteristics of armored vehicle system, common performance condition(CPC) in CREAM is improved.A reliability impact index is characterized by the overall contexts of tasks. Human reliability evaluation criterion of armored vehicle system is formulated. And the result of HRA is obtained based on the method presented in this paper. In addition, the relative weights are estimated by combining scale of 10/10—18/2 and analytical hierarchy process(AHP), and the triangular fuzzy number considering confidence factor and optimism index is adopted in order to reduce the subjectivity. The analysis results show that the method presented in this paper is reasonable and feasible. Meantime, the method can provide guidance for human reliability analysis of other weapon systems.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.
文摘This paper discusses some issues on human reliability model of time dependent human behavior. Some results of the crew reliability experiment on Tsinghua training simulator in China are given, Meanwhile, a case of calculation for human error probability during anticipated transient without scram (ATWS) based on the data drew from the recent experiment is offered.
文摘为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不确定性是必要的;使用模糊逻辑方法处理行为模式各个影响因素的不确定性,根据Hanaman决策树构建模糊推理规则,利用系统人为行为可靠性程序(systematic human action reliability procedure,SHARP)方法所提供的人为差错概率区间确定人为差错概率的隶属度函数。结果表明:该方法考虑了任务场景的不确定性,可以得到人为差错概率的精确值,满足人机系统概率风险评估的需要。