Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ...Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.展开更多
Small mammals have been proposed playing an important role in the energy flow and regeneration of forest ecosystems. We compared species richness, diversity (H’) of small mammal communities and abundance of six domin...Small mammals have been proposed playing an important role in the energy flow and regeneration of forest ecosystems. We compared species richness, diversity (H’) of small mammal communities and abundance of six dominant species of small mammals in disturbed and protected forests (four age classes: 6 - 10, 11 - 15, 16 - 20 and 31 - 40 years old) in China. We also investigated the structural variables (such as species richness, cover rate and abundance of shrubs and grasses) in the bottom layer, which considered to be important for small mammals and might be altered by human disturbance. The relationships between small mammals and these structural variables were examined to determine the potential effects of human disturbance on the small mammals in the restored forests. Our results indicated that the structure and composition of the vegetation in the bottom layer were simplified by human disturbance, while the abundance and cover rate of grasses were significantly increased. Although no significant differences were observed in species richness of small mammals between the protected and disturbed forests at the same age, the diversity index of small mammals in the protected forests was always significantly higher than in the disturbed forests. Regression showed that the species richness and diversity of small mammals increased with the species richness of shrubs, and was negatively correlated to the cover rate of grasses in the bottom layer. Human disturbance increased the total abundance of small mammals, and the increased cover rate of grasses in the bottom layer was beneficial to the abundance of small mammals. Obvious succession of small mammal communities occurred as the protected forest aged. In the protected forests, small ground-dwelling mammals (A. chevrieri, E. miletus and M. pahari) were the dominant species in the younger forests. Other mammals (T. belangeri, D. pernyi and C. erythraeus) gradually became the dominant species as the protected forests aged. However, in the disturbed forests, the smaller ground-dwelling mammals (T. belangeri, D. pernyi and C. erythraeus) were always the dominant species at all ages of the disturbed forests. Regression indicated that the cover rate of grasses in the bottom layer was beneficial to the three smaller body size and ground-dwelling small mammal species, while the shrubs were beneficial to the three bigger body size mammal species.展开更多
基金National Natural Science Foundation of China(30070679)the Natural Science Foundation of Hubei Province(2004ABA138)+1 种基金the Key Technology R&D Programme Foundation of Hubei Province(2002AA301C43)the Hubei Health Bureau Research Programme Foundation(NX200427)
文摘Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.
文摘Small mammals have been proposed playing an important role in the energy flow and regeneration of forest ecosystems. We compared species richness, diversity (H’) of small mammal communities and abundance of six dominant species of small mammals in disturbed and protected forests (four age classes: 6 - 10, 11 - 15, 16 - 20 and 31 - 40 years old) in China. We also investigated the structural variables (such as species richness, cover rate and abundance of shrubs and grasses) in the bottom layer, which considered to be important for small mammals and might be altered by human disturbance. The relationships between small mammals and these structural variables were examined to determine the potential effects of human disturbance on the small mammals in the restored forests. Our results indicated that the structure and composition of the vegetation in the bottom layer were simplified by human disturbance, while the abundance and cover rate of grasses were significantly increased. Although no significant differences were observed in species richness of small mammals between the protected and disturbed forests at the same age, the diversity index of small mammals in the protected forests was always significantly higher than in the disturbed forests. Regression showed that the species richness and diversity of small mammals increased with the species richness of shrubs, and was negatively correlated to the cover rate of grasses in the bottom layer. Human disturbance increased the total abundance of small mammals, and the increased cover rate of grasses in the bottom layer was beneficial to the abundance of small mammals. Obvious succession of small mammal communities occurred as the protected forest aged. In the protected forests, small ground-dwelling mammals (A. chevrieri, E. miletus and M. pahari) were the dominant species in the younger forests. Other mammals (T. belangeri, D. pernyi and C. erythraeus) gradually became the dominant species as the protected forests aged. However, in the disturbed forests, the smaller ground-dwelling mammals (T. belangeri, D. pernyi and C. erythraeus) were always the dominant species at all ages of the disturbed forests. Regression indicated that the cover rate of grasses in the bottom layer was beneficial to the three smaller body size and ground-dwelling small mammal species, while the shrubs were beneficial to the three bigger body size mammal species.