This paper presents a human body communication(HBC)transceiver for wireless body network applications.The transceiver employs on frequency shift keying(FSK)modulation and op-erates in 40 MHz-60 MHz which is the resona...This paper presents a human body communication(HBC)transceiver for wireless body network applications.The transceiver employs on frequency shift keying(FSK)modulation and op-erates in 40 MHz-60 MHz which is the resonant frequency of the human body as an antenna.It achieves high performance and stability through establish passive microstrip line and via models and active device-models.The proposed transceiver is designed and fabricated by FR4 printed cir-cuit board(PCB)process,the transceiver has the ability of configurable data rate up to 2 Mbps and it achieves-86 dBm receiving sensitivity at 2 Mbps data rate.Meanwhile,the transceiver out-put power dynamics range is 34 dB.Furthermore,with a visual interaction interface,the transceiv-er can be agility use in a variety of scenarios.Its measurements are verified on human body.The result shows that the transceiver has ability to send data from person to person by relying on hu-man body antenna radiation.The transceiver shows great prospect in wireless body area networks(WBAN)for telemedicine and emergency communication.展开更多
This paper proposes a novel flexible antenna design operating at very high frequency(VHF)band for on-body applications such as human body communication(HBC).The antenna consists of back-to-back E-shaped fractal and co...This paper proposes a novel flexible antenna design operating at very high frequency(VHF)band for on-body applications such as human body communication(HBC).The antenna consists of back-to-back E-shaped fractal and complimentary structures designed over a thin flex-ible substrate.The overall design working on the principle of fractal geometries and capacitive coupling is highly beneficial to achieve better antenna characteristics even at low frequencies around 35 MHz-45 MHz that are being used for HBC application.The proposed antenna obtained a large bandwidth of around 10.0 MHz in air and a bandwidth of around 8.0 MHz during on-body opera-tion.The antenna has been tested in three different scenarios viz.air,on-body single antenna and on-body communication using two antennas.The insertion loss is reduced to a minimum in all three scenarios,which is quite beneficial for better signal transmission.The size miniaturization with high flexibility in such low frequencies has also been achieved in the paper that makes the proposed design suitable for human body communication applications.展开更多
狭长空间定位问题普遍存在于室内定位应用场景中,虽然传统基于RSSI(Received Signal Strength Indicator)测距的定位方法简便易行,但是狭长空间RSS的波动性以及人体对无线信号的遮挡会严重降低人员定位精度。本文在分析了人体穿透损...狭长空间定位问题普遍存在于室内定位应用场景中,虽然传统基于RSSI(Received Signal Strength Indicator)测距的定位方法简便易行,但是狭长空间RSS的波动性以及人体对无线信号的遮挡会严重降低人员定位精度。本文在分析了人体穿透损耗对狭长空间定位影响的基础上,提出将RSSI测距与扩展卡尔曼滤波定位算法组合实现定位,即在中等尺度(5λ-50λ)内采用基于人体穿透损耗模型的RSSI测距方法定位,在大尺度(〉50λ)内采用基于人体遮挡修正模型的扩展卡尔曼滤波算法定位。实验表明该方法在狭长空间的定位精度明显优于RSSI测距定位方法。展开更多
基金the National Key R&D Program of China(No.2018YFC2001002)the National Natural Sci-ence Foundation of China(No.62173318)+1 种基金Shenzhen Basic Research Project(No.JCYJ20180507182231907,PIFI 2020 FYB0001)CAS Key Lab of Health Informatics.
文摘This paper presents a human body communication(HBC)transceiver for wireless body network applications.The transceiver employs on frequency shift keying(FSK)modulation and op-erates in 40 MHz-60 MHz which is the resonant frequency of the human body as an antenna.It achieves high performance and stability through establish passive microstrip line and via models and active device-models.The proposed transceiver is designed and fabricated by FR4 printed cir-cuit board(PCB)process,the transceiver has the ability of configurable data rate up to 2 Mbps and it achieves-86 dBm receiving sensitivity at 2 Mbps data rate.Meanwhile,the transceiver out-put power dynamics range is 34 dB.Furthermore,with a visual interaction interface,the transceiv-er can be agility use in a variety of scenarios.Its measurements are verified on human body.The result shows that the transceiver has ability to send data from person to person by relying on hu-man body antenna radiation.The transceiver shows great prospect in wireless body area networks(WBAN)for telemedicine and emergency communication.
基金National Key Research and Development Pro-gram of China(No.2018YFC2001002)Shenzhen Basic Re-search Project(Nos.JCYJ20180507182231907,PIFI 2020FYB0001)CAS Key Lab of Health Informatics.
文摘This paper proposes a novel flexible antenna design operating at very high frequency(VHF)band for on-body applications such as human body communication(HBC).The antenna consists of back-to-back E-shaped fractal and complimentary structures designed over a thin flex-ible substrate.The overall design working on the principle of fractal geometries and capacitive coupling is highly beneficial to achieve better antenna characteristics even at low frequencies around 35 MHz-45 MHz that are being used for HBC application.The proposed antenna obtained a large bandwidth of around 10.0 MHz in air and a bandwidth of around 8.0 MHz during on-body opera-tion.The antenna has been tested in three different scenarios viz.air,on-body single antenna and on-body communication using two antennas.The insertion loss is reduced to a minimum in all three scenarios,which is quite beneficial for better signal transmission.The size miniaturization with high flexibility in such low frequencies has also been achieved in the paper that makes the proposed design suitable for human body communication applications.
文摘狭长空间定位问题普遍存在于室内定位应用场景中,虽然传统基于RSSI(Received Signal Strength Indicator)测距的定位方法简便易行,但是狭长空间RSS的波动性以及人体对无线信号的遮挡会严重降低人员定位精度。本文在分析了人体穿透损耗对狭长空间定位影响的基础上,提出将RSSI测距与扩展卡尔曼滤波定位算法组合实现定位,即在中等尺度(5λ-50λ)内采用基于人体穿透损耗模型的RSSI测距方法定位,在大尺度(〉50λ)内采用基于人体遮挡修正模型的扩展卡尔曼滤波算法定位。实验表明该方法在狭长空间的定位精度明显优于RSSI测距定位方法。