The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical func...The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.展开更多
Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis proce...Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results.展开更多
The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walk...The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.展开更多
文摘The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.
基金supported by the "Mechanical Virtual Human of China"project funded by the National Natural Science Foundation of China(30530230)further support was from the UK Royal Scoiety(Grant:IPJ/2006/R3)
文摘Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results.
文摘The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.