Background:Cisplatin is a chemotherapeutic agent commonly used clinically for the treatment of various human cancers.Patients often reduce the use of cisplatin due to its side effects,which in turn affects its treatme...Background:Cisplatin is a chemotherapeutic agent commonly used clinically for the treatment of various human cancers.Patients often reduce the use of cisplatin due to its side effects,which in turn affects its treatment.This study explored the mechanism of action of safflower extract as an adjuvant traditional Chinese medicine for chemotherapy.Methods:Primary human follicle dermal papilla cells(HFDPCs)were used as target cells for cisplatininduced damage to hair cells.Western blotting was used to investigate the molecular targets of cisplatin and safflower extract in causing HFDPCs damage.Cell survival and cell cycle were analyzed by mitochondrial staining reagent WST-1 and propidium iodide.Results:Cisplatin could reduce the viability of HFDPCs without causing cell death.Cisplatin increased the level of phospho-Rad17 in HFDPCs and activated the Chk1/Cdc25C signaling to reduce the expression of Cdc2 protein,thereby arresting the cells in the G2/M phase.The combination of safflower extract and the flavonoids could effectively inhibit the signal transduction of Rad17/Chk1/Cdc25 in cisplatin-treated cells and reduce the cell population in the G2/M phase.Finally,we also confirmed that safflower extract could effectively inhibit the damage to HFDPCs caused by cisplatin,mainly at the level of reducing the DNA damage caused by cisplatin.Conclusions:Safflower extract can be used as an adjuvant Chinese medicine for chemotherapy to reduce the damage caused by chemotherapy to normal hair follicle cells.展开更多
BACKGROUND Dermal papillae(DP)and outer root sheath(ORS)cells play important roles in hair growth and regeneration by regulating the activity of hair follicle(HF)cells.AIM To investigate the effects of human mesenchym...BACKGROUND Dermal papillae(DP)and outer root sheath(ORS)cells play important roles in hair growth and regeneration by regulating the activity of hair follicle(HF)cells.AIM To investigate the effects of human mesenchymal stem cell-derived extracellular vesicles(hMSC-EVs)on DP and ORS cells as well as HFs.EVs are known to regulate various cellular functions.However,the effects of hMSC-EVs on hair growth,particularly on human-derived HF cells(DP and ORS cells),and the possible mechanisms underlying these effects are unknown.METHODS hMSC-EVs were isolated and characterized using transmission electron microscopy,nanoparticle tracking analysis,western blotting,and flow cytometry.The activation of DP and ORS cells was analyzed using cellular proliferation,migration,western blotting,and real-time polymerase chain reaction.HF growth was evaluated ex vivo using human HFs.RESULTS Wnt3a is present in a class of hMSC-EVs and associated with the EV membrane.hMSC-EVs promote the proliferation of DP and ORS cells.Moreover,they translocateβ-catenin into the nucleus of DP cells by increasing the expression ofβ-catenin target transcription factors(Axin2,EP2 and LEF1)in DP cells.Treatment with hMSC-EVs also promoted the migration of ORS cells and enhanced the expression of keratin(K)differentiation markers(K6,K16,K17,and K75)in ORS cells.Furthermore,treatment with hMSC-EVs increases hair shaft elongation in cultured human HFs.CONCLUSION These findings suggest that hMSC-EVs are potential candidates for further preclinical and clinical studies on hair loss treatment.展开更多
Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)th...Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)that continuously self-renew,differentiate,regulate hair growth,and maintain skin homeostasis.Recently,MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential.In this review,we describe the applications of human hair follicle-derived MSCs(hHF-MSCs)in tissue engineering and regenerative medicine.We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail.We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages,including supplementation of growth factors,3D suspension culture technology,and 3D aggregates of MSCs.In addition,we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels,regenerated hair follicles,induced red blood cells,and induced pluripotent stem cells.In summary,the abundance,convenient accessibility,and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy.展开更多
Banana flowers contain various bioactive components, including several antioxidants with anti-inflammatory effects. However, it is unclear whether they can reduce and prevent hair loss. This study examines the effect ...Banana flowers contain various bioactive components, including several antioxidants with anti-inflammatory effects. However, it is unclear whether they can reduce and prevent hair loss. This study examines the effect of banana flower extracts on preventing hair loss and strengthening hair roots. The banana flower extract(HappyAngel^(■))was used to treat human hair follicle dermal papilla cells(HFDPCs)and the expression of reactive oxygen species(ROS), dihydrotestosterone(DHT), and hair-related genes(SRD5A1, SRD5A2, AR, and KROX20)were monitored. Fifty subjects were divided into a placebo group and a banana flower group. The experimental group consumed banana flower extract daily for twelve weeks and then underwent hair testing, hair-related genes analysis, collection of hair loss, and questionnaires. The results showed that the banana flower extract significantly increased hair cell growth and decreased the expression of ROS, DHT, and hair follicle growth inhibition-related SRD5A1, SRD5A2, and AR genes, and significantly increased the expression of hair growth-related KROX20 gene in HFDPCs. Consuming banana flower extract for twelve weeks increased the hair root diameter and reduced hair loss and scalp redness compared to the placebo group. Thus, banana flower extract(HappyAngel^(■))can stimulate hair growth and inhibit the activation of hair loss genes.展开更多
In this work, the influence of phenol-enriched olive mill wastewater (OMWW) extract on hair growth was investigated <em>in vitro</em> on human follicle dermal papilla cells. OMWW has already shown great po...In this work, the influence of phenol-enriched olive mill wastewater (OMWW) extract on hair growth was investigated <em>in vitro</em> on human follicle dermal papilla cells. OMWW has already shown great potential for use in skincare products, and its high polyphenol content is predestined to have a positive effect on hair growth. The studies included caffeine, a positive modulator of hair growth, and dihydrotestosterone, which causes hair loss <em>in vivo</em>, as controls. The impact of the investigated compounds on hair growth was evaluated by studies on cell viability and proliferation, the release of growth factors (insulin-like growth factor-1 and vascular endothelial growth factor), and the reduction of reactive oxygen species formation. OMWW showed a positive influence on the proliferation of the human follicle dermal papilla cells. Moreover, the extract leads to a significantly increased secretion of insulin-like growth factor-1, and a considerable reduction in reactive oxygen species formation was observed. Overall, our results show that the investigated phenol-enriched OMWW extract is a promising ingredient for hair care to improve hair growth, prevent hair loss due to oxidative stress and maintain a healthy scalp.展开更多
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-110-13 and TCRD-TPE-111-23,Taipei,Taiwan.
文摘Background:Cisplatin is a chemotherapeutic agent commonly used clinically for the treatment of various human cancers.Patients often reduce the use of cisplatin due to its side effects,which in turn affects its treatment.This study explored the mechanism of action of safflower extract as an adjuvant traditional Chinese medicine for chemotherapy.Methods:Primary human follicle dermal papilla cells(HFDPCs)were used as target cells for cisplatininduced damage to hair cells.Western blotting was used to investigate the molecular targets of cisplatin and safflower extract in causing HFDPCs damage.Cell survival and cell cycle were analyzed by mitochondrial staining reagent WST-1 and propidium iodide.Results:Cisplatin could reduce the viability of HFDPCs without causing cell death.Cisplatin increased the level of phospho-Rad17 in HFDPCs and activated the Chk1/Cdc25C signaling to reduce the expression of Cdc2 protein,thereby arresting the cells in the G2/M phase.The combination of safflower extract and the flavonoids could effectively inhibit the signal transduction of Rad17/Chk1/Cdc25 in cisplatin-treated cells and reduce the cell population in the G2/M phase.Finally,we also confirmed that safflower extract could effectively inhibit the damage to HFDPCs caused by cisplatin,mainly at the level of reducing the DNA damage caused by cisplatin.Conclusions:Safflower extract can be used as an adjuvant Chinese medicine for chemotherapy to reduce the damage caused by chemotherapy to normal hair follicle cells.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), Funded by the Ministry of Education, No. NRF-2019R1I1A1A01061296 and No. NRF-2021R1I1A1A01040732Korea Health Technology R & D Project through the Korea Health Industry Development Institute, Funded By the Ministry of Health & Welfare, Republic of Korea, No. HI15C0001
文摘BACKGROUND Dermal papillae(DP)and outer root sheath(ORS)cells play important roles in hair growth and regeneration by regulating the activity of hair follicle(HF)cells.AIM To investigate the effects of human mesenchymal stem cell-derived extracellular vesicles(hMSC-EVs)on DP and ORS cells as well as HFs.EVs are known to regulate various cellular functions.However,the effects of hMSC-EVs on hair growth,particularly on human-derived HF cells(DP and ORS cells),and the possible mechanisms underlying these effects are unknown.METHODS hMSC-EVs were isolated and characterized using transmission electron microscopy,nanoparticle tracking analysis,western blotting,and flow cytometry.The activation of DP and ORS cells was analyzed using cellular proliferation,migration,western blotting,and real-time polymerase chain reaction.HF growth was evaluated ex vivo using human HFs.RESULTS Wnt3a is present in a class of hMSC-EVs and associated with the EV membrane.hMSC-EVs promote the proliferation of DP and ORS cells.Moreover,they translocateβ-catenin into the nucleus of DP cells by increasing the expression ofβ-catenin target transcription factors(Axin2,EP2 and LEF1)in DP cells.Treatment with hMSC-EVs also promoted the migration of ORS cells and enhanced the expression of keratin(K)differentiation markers(K6,K16,K17,and K75)in ORS cells.Furthermore,treatment with hMSC-EVs increases hair shaft elongation in cultured human HFs.CONCLUSION These findings suggest that hMSC-EVs are potential candidates for further preclinical and clinical studies on hair loss treatment.
基金National Natural Science Foundation of China,No.81573067the Joint Construction Project between Jilin Province and Provincial Colleges,No.SXGJQY2017-12+2 种基金the Jilin Province Science and Technology Development Plan,No.20190304044YYthe Innovative Special Industry Fund Project in Jilin Province,No.2018C049-2the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China,No.ICT1800381.
文摘Hair follicles are easily accessible skin appendages that protect against cold and potential injuries.Hair follicles contain various pools of stem cells,such as epithelial,melanocyte,and mesenchymal stem cells(MSCs)that continuously self-renew,differentiate,regulate hair growth,and maintain skin homeostasis.Recently,MSCs derived from the dermal papilla or dermal sheath of the human hair follicle have received attention because of their accessibility and broad differentiation potential.In this review,we describe the applications of human hair follicle-derived MSCs(hHF-MSCs)in tissue engineering and regenerative medicine.We have described protocols for isolating hHF-MSCs from human hair follicles and their culture condition in detail.We also summarize strategies for maintaining hHF-MSCs in a highly proliferative but undifferentiated state after repeated in vitro passages,including supplementation of growth factors,3D suspension culture technology,and 3D aggregates of MSCs.In addition,we report the potential of hHF-MSCs in obtaining induced smooth muscle cells and tissue-engineered blood vessels,regenerated hair follicles,induced red blood cells,and induced pluripotent stem cells.In summary,the abundance,convenient accessibility,and broad differentiation potential make hHF-MSCs an ideal seed cell source of regenerative medical and cell therapy.
文摘Banana flowers contain various bioactive components, including several antioxidants with anti-inflammatory effects. However, it is unclear whether they can reduce and prevent hair loss. This study examines the effect of banana flower extracts on preventing hair loss and strengthening hair roots. The banana flower extract(HappyAngel^(■))was used to treat human hair follicle dermal papilla cells(HFDPCs)and the expression of reactive oxygen species(ROS), dihydrotestosterone(DHT), and hair-related genes(SRD5A1, SRD5A2, AR, and KROX20)were monitored. Fifty subjects were divided into a placebo group and a banana flower group. The experimental group consumed banana flower extract daily for twelve weeks and then underwent hair testing, hair-related genes analysis, collection of hair loss, and questionnaires. The results showed that the banana flower extract significantly increased hair cell growth and decreased the expression of ROS, DHT, and hair follicle growth inhibition-related SRD5A1, SRD5A2, and AR genes, and significantly increased the expression of hair growth-related KROX20 gene in HFDPCs. Consuming banana flower extract for twelve weeks increased the hair root diameter and reduced hair loss and scalp redness compared to the placebo group. Thus, banana flower extract(HappyAngel^(■))can stimulate hair growth and inhibit the activation of hair loss genes.
文摘In this work, the influence of phenol-enriched olive mill wastewater (OMWW) extract on hair growth was investigated <em>in vitro</em> on human follicle dermal papilla cells. OMWW has already shown great potential for use in skincare products, and its high polyphenol content is predestined to have a positive effect on hair growth. The studies included caffeine, a positive modulator of hair growth, and dihydrotestosterone, which causes hair loss <em>in vivo</em>, as controls. The impact of the investigated compounds on hair growth was evaluated by studies on cell viability and proliferation, the release of growth factors (insulin-like growth factor-1 and vascular endothelial growth factor), and the reduction of reactive oxygen species formation. OMWW showed a positive influence on the proliferation of the human follicle dermal papilla cells. Moreover, the extract leads to a significantly increased secretion of insulin-like growth factor-1, and a considerable reduction in reactive oxygen species formation was observed. Overall, our results show that the investigated phenol-enriched OMWW extract is a promising ingredient for hair care to improve hair growth, prevent hair loss due to oxidative stress and maintain a healthy scalp.