AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2....AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2.Growth rates for Bxpc-3 cells were assessed by methyl thiazolyl tetrazolium(MTT) and colony formation assays.Cell cycle changes were analyzed by flow cytometry.Apoptosis was measured by flow cytometry and Hoechst 33258 fluorescence staining.A scratch assay and a Matrigel invasion assay were used to detect cell migration and invasion.Expression of Bax,Bcl-2,survivin,cyclin D1,matrix metalloproteinase(MMP)-2,MMP-9,cleaved caspase-3,caspase-8,and caspase-9 mRNA were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Bax,Bcl-2,survivin,cyclin D1,cleaved caspase-3,caspase-8 and caspase-9 protein levels were examined by western blotting.Expression of MMP-2 and MMP-9 proteins in culture supernatants were determined by enzymelinked immunosorbent assay(ELISA).RESULTS:Rh2 significantly inhibited Bxpc-3 cell proliferation in a dose-and time-dependent manner,as evaluated by the MTT(P < 0.05) and colony formation assays(P < 0.05).Compared to the control group,Rh2 significantly increased the percentage of Bxpc-3 cells in the G 0 /G 1 phase from 43.32% ± 2.17% to 71.32% ± 1.16%,which was accompanied by a decrease in S phase(from 50.86% ± 1.29% to 28.48% ± 1.18%) and G 2 /M phase(from 5.81% ± 1.19% to 0.20% ± 0.05%) in a dose-dependent manner(P < 0.05),suggesting that Rh2 arrested cell cycle progression at the G 0 /G 1 phase,as measured by flow cytometry.Compared to the control group,cells treated with Rh2 showed significantly higher apoptosis ratios in a dosedependent manner(percentage of early apoptotic cells:from 5.29% ± 2.28% to 38.90% ± 3.42%(F = 56.20,P < 0.05);percentage of late apoptotic cells:from 4.58% ± 1.42% to 36.32% ± 2.73%(F = 86.70,P < 0.05).Rh2 inhibited Bxpc-3 cell migration and invasion,as detected by scratch wound healing assay and Matrigel invasion assay [percentages of scratch wound healing for 12 h,24 h and 48 h(control vs experimental group):37.3% ± 4.8%vs 18.30% ± 1.65%,58.7% ± 3.5% vs 38.00% ± 4.09% and 93.83% ± 4.65% vs 65.50% ± 4.09%,respectively;t = 6.489,t = 6.656 and t = 7.926,respectively,P < 0.05;the number of cells invading at various concentrations(0 μmol/L,35 μmol/L,45 μmol/L and 55 μmol/L):81.10 ± 9.55,46.40 ± 6.95,24.70 ± 6.88 and 8.70 ± 3.34,respectively(F = 502.713,P < 0.05)].RT-PCR,western blotting or ELISA showed that mRNA and protein expression of Bax,cleaved caspase-3 and caspase-9 were upregulated(P < 0.05),while mRNA and protein expression of Bcl-2,survivin,cyclin D1,MMP-2 and MMP-9 were downregulated(P < 0.05).CONCLUSION:Ginsenoside Rh2 inhibits proliferation,migration and invasion and induces apoptosis of the human pancreatic cancer cell line Bxpc-3.展开更多
AIM: To investigate the effects of p57^kip2, cyclinE protein and proliferating cell nuclear antigen (PCNA) on occurrence and progression of human pancreatic cancer. METHODS: The expression of p57^kip2, cyclinE pro...AIM: To investigate the effects of p57^kip2, cyclinE protein and proliferating cell nuclear antigen (PCNA) on occurrence and progression of human pancreatic cancer. METHODS: The expression of p57^kip2, cyclinE protein and PCNA in tumor tissues and adjacent tissues from 32 patients with pancreatic cancer was detected by SP immunohistochemical technique. RESULTS: The positive expression rate of p57^kip2 protein in tumor tissues was 46.9%, which was lower than that in adjacent pancreatic tissues (χ^2 = 5.317, P〈0.05). p57^kip2 protein positive expression remarkably correlated with tumor cell differentiation (P〈0.05), but not with lymph node metastasis (P〉0.05). The positive expression rate of cyclinE protein in tumor tissues was 68.8%, which was higher than that in adjacent pancreatic tissues (χ^2 = 4.063, P〈0.05). CyclinE protein positive expression significantly correlated with tumor cell differentiation and lymph node metastasis (P〈0.05). The positive expression rate of PCNA in the tumor tissues was 71.9%, which was higher than that in adjacent pancreatic tissues (χ^2 = 5.189, P〈0.05). PCNA positive expression remarkably correlated with tumor cell differentiation and lymph node metastasis (P〈0.05). CONCLUSION: The decreased expression of p57^kip2 and/or overexpression of cyclinE protein and PCNA may contribute to the occurrence and progression of pancreatic cancer. p57^kip2, cyclinE protein, and PCNA play an important role in occurrence and progression of pancreatic cancer.展开更多
AIM: To analyse αv integrin expression induced by gas- trin in pancreatic cancer models.METHODS: αv integrin mRNA expression in human pan- creatic cancer cells was analysed using a "cancer genes" array and confi...AIM: To analyse αv integrin expression induced by gas- trin in pancreatic cancer models.METHODS: αv integrin mRNA expression in human pan- creatic cancer cells was analysed using a "cancer genes" array and confirmed by real-time reverse transcription- polymerase chain reaction (PCR). Western blotting and semi-quantitative immunohistochemistry were used to examine protein levels in human pancreatic cancer cell lines and pancreatic tissues, respectively, The role of αv integrin on gastrin-induced cell adhesion was examined using blocking anti-αv integrin monoclonal antibodies. Adherent cells were quantified by staining with crystal violet.RESULTS: Using a "cancer genes" array we identi- fied c^v integrin as a new gastrin target gene in human pancreatic cancer cells. A quantitative real-time PCR approach was used to confirm αv integrin gene expression. We also demonstrate that Src family kinases and the PI 3-kinase, two signalling pathways specifically activated by the CCK-2 receptor (CCK2R), are involved in gastrin-mediated αv integrin expression. In contrast, inhibition of the ERK pathway was without any effect on αv integrin expression induced by gastrin. Our results also show that gastrin modulates cell adhesion via αv integrins. Indeed, in vitro adhesion assays performed on fibronectin show that gastrin significantly increases adhesion of pancreatic cancer cells. The use of blocking anti-αv integrin monoclonal antibodies completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we showed in vivo that the targeted CCK2R expression in the pancreas of Elas-CCK2 mice, leads to the overexpression of αv integrin. This process may contribute to pancreatic turnout development observed in these transgenic animals.CONCLUSION: αv integrin is a new gastrin target in pancreatic cancer models and contributes to gastrin effects on cell adhesion.展开更多
AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator prote...AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised.RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable.展开更多
Objective:To study the mechanisms of pancreatic cancer treatment with Kanglaite combined Gemcitabine by investigating the relationship between the apoptosis and the expression of bcl-2, Bax and VEGF in pancreatic canc...Objective:To study the mechanisms of pancreatic cancer treatment with Kanglaite combined Gemcitabine by investigating the relationship between the apoptosis and the expression of bcl-2, Bax and VEGF in pancreatic cancer cells.Methods:Nude mouse subcutaneous transplantation tumor model of Human PC-3 pancreatic cancer was established; the expressions of bcl-2, Bax and VEGF of transplantation tumor cell were determined; the earlier apoptosis rate of pancreatic cancer cell and the gross tumor volume were determined. Results:Kanglaite combined Gemcitabine remarkably decreased the protein expression of bcl-2,raised the expression of Bax,increased the apoptosis rate of the pancreatic cancer and contract the gross tumor volume. Kanglaite greatly decreased the protein expression of VEGF of the tumor cell. Conclusion:Therapeutic efficacy of Kanglaite combined Gemcitabine is far better than separate use of the two medicines in the pancreatic cancer transplantation tumor treatment.展开更多
BACKGROUND Although treatment options for gastric cancer(GC)continue to advance,the overall prognosis for patients with GC remains poor.At present,the predictors of treatment efficacy remain controversial except for h...BACKGROUND Although treatment options for gastric cancer(GC)continue to advance,the overall prognosis for patients with GC remains poor.At present,the predictors of treatment efficacy remain controversial except for high microsatellite instability.AIM To develop methods to identify groups of patients with GC who would benefit the most from receiving the combination of a programmed cell death protein 1(PD-1)inhibitor and chemotherapy.METHODS We acquired data from 63 patients with human epidermal growth factor receptor 2(HER2)-negative GC with a histological diagnosis of GC at the Cancer Hospital,Chinese Academy of Medical Sciences between November 2020 and October 2022.All of the patients screened received a PD-1 inhibitor combined with chemotherapy as the first-line treatment.RESULTS As of July 1,2023,the objective response rate was 61.9%,and the disease control rate was 96.8%.The median progression-free survival(mPFS)for all patients was 6.3 months.The median overall survival was not achieved.Survival analysis showed that patients with a combined positive score(CPS)≥1 exhibited an extended trend in progression-free survival(PFS)when compared to patients with a CPS of 0 after receiving a PD-1 inhibitor combined with oxaliplatin and tegafur as the first-line treatment.PFS exhibited a trend for prolongation as the expression level of HER2 increased.Based on PFS,we divided patients into two groups:A treatment group with excellent efficacy and a treatment group with poor efficacy.The mPFS of the excellent efficacy group was 8 months,with a mPFS of 9.1 months after excluding a cohort of patients who received interrupted therapy due to surgery.The mPFS was 4.5 months in patients in the group with poor efficacy who did not receive surgery.Using good/poor efficacy as the endpoint of our study,univariate analysis revealed that both CPS score(P=0.004)and HER2 expression level(P=0.015)were both factors that exerted significant influence on the efficacy of treatment the combination of a PD-1 inhibitor and chemotherapy in patients with advanced GC(AGC).Finally,multivariate analysis confirmed that CPS score was a significant influencing factor.CONCLUSION CPS score and HER2 expression both impacted the efficacy of immunotherapy combined with chemotherapy in AGC patients who were non-positive for HER2.展开更多
Pancreatic ductal adenocarcinoma(PDAC),the most common type of pancreatic tumor,is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its earlymetastasis a...Pancreatic ductal adenocarcinoma(PDAC),the most common type of pancreatic tumor,is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its earlymetastasis and lack of response to chemotherapy and radiation.Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells(CSCs),a small and distinct population of cancer cells that mediates tumoregenesis,metastasis and resistance to standard treatments.Thus,CSCs could be a target for more effective treatment options.Interestingly,pancreatic CSCs are subject to regulation by some of key embryonic stem cell(ESC)transctiption factors abberently expressed in PDAC,such as SOX2,OCT4 and NANOG.ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells.The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis.Here we provide an overview of stem cell transcription factors,particularly SOX2,OCT4,and NANOG,on their expression and function in pancreatic cancer.In contrast to embryonic stem cells,in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes,de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal,dedifferentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes.Thus,targeting ESC factors,particularly SOX2,could be a worthy strategy for pancreatic cancer therapy.展开更多
Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this dise...Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and-18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin(CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1,-7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition(EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.展开更多
BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, ...BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS: Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real- time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by flow cytometric analysis. RESULTS: All pancreatic carcinoma cell lines tested expressed significantly higher levels of ABCG2 than non-malignant fibroblasts or two other malignant non- pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of five pancreatic carcinoma cell lines tested. Using flow cytometric analysis we confirmed surface expression of ABCG2 in all five lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels.CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.展开更多
Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor ...Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16<sup>INK4A</sup> and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.展开更多
Ordinary chronic pancreatitis is a well-known risk factor for pancreatic cancer,whereas such an association with autoimmune pancreatitis(AIP)is widely debated.Due to the rarity of the latter disorder,there are few spe...Ordinary chronic pancreatitis is a well-known risk factor for pancreatic cancer,whereas such an association with autoimmune pancreatitis(AIP)is widely debated.Due to the rarity of the latter disorder,there are few specific clinical and epidemiological studies investigating the relation between AIP and pancreatic cancer,which do not seem to support it.However,these studies are affected by several limitations and,therefore,a link between AIP(and,specifically,type 1 AIP)and pancreatic cancer cannot be ruled out definitively on this basis.Moreover,several immunopathological aspects of type 1 AIP and,in general,immunoglobulin G4-related disease can create an immunological context that may impair the tumoral immunosurveillance and promote the pancreatic carcinogenesis and its progression.In detail,Th2 immunological dominance,type 2 macrophage polarization and basophil infiltration observed in type 1 AIP,may play a permissive role in creating a favorable immunological environment for pancreatic carcinogenesis,in addition to the immunosuppressive therapies that can be used in these patients.展开更多
Objective:Circulating tumor cells(CTCs)play a critical role in cancer metastasis,but their prevalence and significance remain unclear.This study attempted to track the epithelial-mesenchymal transition(EMT)status of C...Objective:Circulating tumor cells(CTCs)play a critical role in cancer metastasis,but their prevalence and significance remain unclear.This study attempted to track the epithelial-mesenchymal transition(EMT)status of CTCs in breast cancer patients and investigate their clinical relevance.Methods:In this study,the established negFACS-IF:E/M platform was applied to isolate rare CTCs and characterize their EMT status in breast cancer.A total of 89 breast cancer patients were recruited,including stage 0–III(n=60)and late stage(n=29)cases.Results:Using the negFACS-IF:E/M platform,it was found that in human epidermal growth factor receptor 2(HER2)+patients,mesenchymal CTCs usually exhibited a high percentage of HER2+cells.Stage IV breast cancer patients had considerably more CTCs than stage 0–III patients.Among stage 0–III breast cancers,the HER2 subtype included a significantly higher percentage of mesenchymal and biphenotypic(epithelial and mesenchymal)CTCs than the luminal A or B subtypes.Among stage IV patients,CTCs were predominantly epithelial in cases with local recurrence and were more mesenchymal in cases with distant metastasis.By applying a support vector machine(SVM)algorithm,the EMT status of CTCs could distinguish between breast cancer cases with metastasis/local recurrence and those without recurrence.Conclusions:The negFACS-IF:E/M platform provides a flexible and generally acceptable method for the highly sensitive and specific detection of CTCs and their EMT traits in breast cancer.This study demonstrated that the EMT status of CTCs had high clinical relevance in breast cancer,especially in predicting the distant metastasis or local recurrence of breast cancer.展开更多
Far-infrared ray (FIR) is electromagnetic wave between 4 and 1000 μm. FIR causes heating, but how it affects cells is not well understood. In this study, we developed a culture incubator that can continuously irradia...Far-infrared ray (FIR) is electromagnetic wave between 4 and 1000 μm. FIR causes heating, but how it affects cells is not well understood. In this study, we developed a culture incubator that can continuously irradiate cells with FIR and examined the effects of FIR on five human cancer cell lines, namely A431 (vulva), A549 (lung), HSC3 (tongue), MCF7 (breast) and Sa3 (gingiva). We found that FIR inhibits cell proliferation and induces cell hypertrophy without apoptosis in A549, HSC3 and Sa3 cells. Flow cytometry revealed that the inhibition of proliferation was due to G2/M arrest. Contrary, FIR did not inhibit cell proliferation and cause cell hypertrophy in A431 or MCF7 cells. Microarray analysis revealed that FIR suppressed the expression of cell proliferation-related and stress-responsive genes in FIR-sensitive cell lines (A549, HSC3 and Sa3). ATF3 in particular was identified as a key mediator of the FIR effect. Over-expression of ATF3 inhibited cell proliferation and knockdown of ATF3 mRNA using an antisense oligonucleotide suppressed FIR-induced growth arrest. These results indicate that a body temperature range of FIR radiation suppresses the proliferation of A549, HSC3, Sa3 cells and it appears that ATF3 play important roles in this effect.展开更多
Objective:The aim of this study was to investigate the inhibitory effect of apogossypolone (ApoG2) on subcutaneous implants of human LNCaP prostatic carcinoma cells, and explore its mechanism. Methods:To establish hum...Objective:The aim of this study was to investigate the inhibitory effect of apogossypolone (ApoG2) on subcutaneous implants of human LNCaP prostatic carcinoma cells, and explore its mechanism. Methods:To establish human LNCaP prostatic carcinoma cell line subcutaneous xenograft models and observe the inhibitory effect of ApoG2 on the tumor model. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and-8 in tumor tissues. The microvessel density was calculated. Results:ApoG2 could obviously inhibit the growth of subcutaneous prostatic carcinoma implant. ApoG2 decreased the expression of PCNA and CD31, and increased the expression of caspases-3,-8 in tumor tissues. Conclusion:ApoG2 has an inhibitory effect on prostatic carcinoma implants.展开更多
OBJECTIVE To investigate apoptosis induced by photodynamic therapy with benzoporphyrin derivative monoacid ring A (BPD-MA) and explore its potential mechanism in human bladder cancer cells. METHODS Photosensitizatio...OBJECTIVE To investigate apoptosis induced by photodynamic therapy with benzoporphyrin derivative monoacid ring A (BPD-MA) and explore its potential mechanism in human bladder cancer cells. METHODS Photosensitization of BPD-MA was activated with a red light Laser (632.8nm) delivered at 10 mW/cm^2 to give a total dose of 2.4 J/cm^2. Cellular apoptosis was measured with flow cytometry analysis and an insitu terminal deoxyuridine nick end-labeling (TUNEL) assay. Changes in mitochondrial membrane potential (△φm) were monitored by a flow cy-tometric method with Rhodamine 123 staining and the expression of bcl- 2 in BIU-87 cells was detected with immunocytochemical staining. RESULTS At 8 h following photodynamic treatment, the degree of apoptosis was significantly increased when analyzed with flow cytometry and TUNEL assay. Treatment of the BIU-87 cells by PDT with BPD-MA resulted in the collapse of the △φm and a decrease of bcl-2 expression. CONCLUSION BPD-MA-mediated PDT can effectively induce apoptosis in BIU-87 cells. The mechanism probably is through a mitochondrial-initiated pathway.展开更多
基金Supported by National Natural Science Foundation of China,No. 30700252Health Department Project of Guangxi,No.Z2012104Education Department Project of Guangxi,No.201204LX048
文摘AIM:To investigate the effects of ginsenoside Rh2 on the human pancreatic cancer cell line Bxpc-3.METHODS:The human pancreatic cancer cell line Bxpc-3 was cultured in vitro and treated with or without ginsenoside Rh2.Growth rates for Bxpc-3 cells were assessed by methyl thiazolyl tetrazolium(MTT) and colony formation assays.Cell cycle changes were analyzed by flow cytometry.Apoptosis was measured by flow cytometry and Hoechst 33258 fluorescence staining.A scratch assay and a Matrigel invasion assay were used to detect cell migration and invasion.Expression of Bax,Bcl-2,survivin,cyclin D1,matrix metalloproteinase(MMP)-2,MMP-9,cleaved caspase-3,caspase-8,and caspase-9 mRNA were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Bax,Bcl-2,survivin,cyclin D1,cleaved caspase-3,caspase-8 and caspase-9 protein levels were examined by western blotting.Expression of MMP-2 and MMP-9 proteins in culture supernatants were determined by enzymelinked immunosorbent assay(ELISA).RESULTS:Rh2 significantly inhibited Bxpc-3 cell proliferation in a dose-and time-dependent manner,as evaluated by the MTT(P < 0.05) and colony formation assays(P < 0.05).Compared to the control group,Rh2 significantly increased the percentage of Bxpc-3 cells in the G 0 /G 1 phase from 43.32% ± 2.17% to 71.32% ± 1.16%,which was accompanied by a decrease in S phase(from 50.86% ± 1.29% to 28.48% ± 1.18%) and G 2 /M phase(from 5.81% ± 1.19% to 0.20% ± 0.05%) in a dose-dependent manner(P < 0.05),suggesting that Rh2 arrested cell cycle progression at the G 0 /G 1 phase,as measured by flow cytometry.Compared to the control group,cells treated with Rh2 showed significantly higher apoptosis ratios in a dosedependent manner(percentage of early apoptotic cells:from 5.29% ± 2.28% to 38.90% ± 3.42%(F = 56.20,P < 0.05);percentage of late apoptotic cells:from 4.58% ± 1.42% to 36.32% ± 2.73%(F = 86.70,P < 0.05).Rh2 inhibited Bxpc-3 cell migration and invasion,as detected by scratch wound healing assay and Matrigel invasion assay [percentages of scratch wound healing for 12 h,24 h and 48 h(control vs experimental group):37.3% ± 4.8%vs 18.30% ± 1.65%,58.7% ± 3.5% vs 38.00% ± 4.09% and 93.83% ± 4.65% vs 65.50% ± 4.09%,respectively;t = 6.489,t = 6.656 and t = 7.926,respectively,P < 0.05;the number of cells invading at various concentrations(0 μmol/L,35 μmol/L,45 μmol/L and 55 μmol/L):81.10 ± 9.55,46.40 ± 6.95,24.70 ± 6.88 and 8.70 ± 3.34,respectively(F = 502.713,P < 0.05)].RT-PCR,western blotting or ELISA showed that mRNA and protein expression of Bax,cleaved caspase-3 and caspase-9 were upregulated(P < 0.05),while mRNA and protein expression of Bcl-2,survivin,cyclin D1,MMP-2 and MMP-9 were downregulated(P < 0.05).CONCLUSION:Ginsenoside Rh2 inhibits proliferation,migration and invasion and induces apoptosis of the human pancreatic cancer cell line Bxpc-3.
文摘AIM: To investigate the effects of p57^kip2, cyclinE protein and proliferating cell nuclear antigen (PCNA) on occurrence and progression of human pancreatic cancer. METHODS: The expression of p57^kip2, cyclinE protein and PCNA in tumor tissues and adjacent tissues from 32 patients with pancreatic cancer was detected by SP immunohistochemical technique. RESULTS: The positive expression rate of p57^kip2 protein in tumor tissues was 46.9%, which was lower than that in adjacent pancreatic tissues (χ^2 = 5.317, P〈0.05). p57^kip2 protein positive expression remarkably correlated with tumor cell differentiation (P〈0.05), but not with lymph node metastasis (P〉0.05). The positive expression rate of cyclinE protein in tumor tissues was 68.8%, which was higher than that in adjacent pancreatic tissues (χ^2 = 4.063, P〈0.05). CyclinE protein positive expression significantly correlated with tumor cell differentiation and lymph node metastasis (P〈0.05). The positive expression rate of PCNA in the tumor tissues was 71.9%, which was higher than that in adjacent pancreatic tissues (χ^2 = 5.189, P〈0.05). PCNA positive expression remarkably correlated with tumor cell differentiation and lymph node metastasis (P〈0.05). CONCLUSION: The decreased expression of p57^kip2 and/or overexpression of cyclinE protein and PCNA may contribute to the occurrence and progression of pancreatic cancer. p57^kip2, cyclinE protein, and PCNA play an important role in occurrence and progression of pancreatic cancer.
文摘AIM: To analyse αv integrin expression induced by gas- trin in pancreatic cancer models.METHODS: αv integrin mRNA expression in human pan- creatic cancer cells was analysed using a "cancer genes" array and confirmed by real-time reverse transcription- polymerase chain reaction (PCR). Western blotting and semi-quantitative immunohistochemistry were used to examine protein levels in human pancreatic cancer cell lines and pancreatic tissues, respectively, The role of αv integrin on gastrin-induced cell adhesion was examined using blocking anti-αv integrin monoclonal antibodies. Adherent cells were quantified by staining with crystal violet.RESULTS: Using a "cancer genes" array we identi- fied c^v integrin as a new gastrin target gene in human pancreatic cancer cells. A quantitative real-time PCR approach was used to confirm αv integrin gene expression. We also demonstrate that Src family kinases and the PI 3-kinase, two signalling pathways specifically activated by the CCK-2 receptor (CCK2R), are involved in gastrin-mediated αv integrin expression. In contrast, inhibition of the ERK pathway was without any effect on αv integrin expression induced by gastrin. Our results also show that gastrin modulates cell adhesion via αv integrins. Indeed, in vitro adhesion assays performed on fibronectin show that gastrin significantly increases adhesion of pancreatic cancer cells. The use of blocking anti-αv integrin monoclonal antibodies completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we showed in vivo that the targeted CCK2R expression in the pancreas of Elas-CCK2 mice, leads to the overexpression of αv integrin. This process may contribute to pancreatic turnout development observed in these transgenic animals.CONCLUSION: αv integrin is a new gastrin target in pancreatic cancer models and contributes to gastrin effects on cell adhesion.
基金Supported by National Institute for Health Research Liverpool Pancreatic Biomedical Research Unit and the Pancreatic Cancer Research Fund (to Nedjadi T)
文摘AIM: To establish stable tetracycline-inducible pancreatic cancer cell lines. METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetracycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised.RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and maintenance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nucleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellular proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransferase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully controllable.
文摘Objective:To study the mechanisms of pancreatic cancer treatment with Kanglaite combined Gemcitabine by investigating the relationship between the apoptosis and the expression of bcl-2, Bax and VEGF in pancreatic cancer cells.Methods:Nude mouse subcutaneous transplantation tumor model of Human PC-3 pancreatic cancer was established; the expressions of bcl-2, Bax and VEGF of transplantation tumor cell were determined; the earlier apoptosis rate of pancreatic cancer cell and the gross tumor volume were determined. Results:Kanglaite combined Gemcitabine remarkably decreased the protein expression of bcl-2,raised the expression of Bax,increased the apoptosis rate of the pancreatic cancer and contract the gross tumor volume. Kanglaite greatly decreased the protein expression of VEGF of the tumor cell. Conclusion:Therapeutic efficacy of Kanglaite combined Gemcitabine is far better than separate use of the two medicines in the pancreatic cancer transplantation tumor treatment.
基金Supported by Beijing CSCO Clinical Oncology Research Foundation,No.Y-HH202102-0314。
文摘BACKGROUND Although treatment options for gastric cancer(GC)continue to advance,the overall prognosis for patients with GC remains poor.At present,the predictors of treatment efficacy remain controversial except for high microsatellite instability.AIM To develop methods to identify groups of patients with GC who would benefit the most from receiving the combination of a programmed cell death protein 1(PD-1)inhibitor and chemotherapy.METHODS We acquired data from 63 patients with human epidermal growth factor receptor 2(HER2)-negative GC with a histological diagnosis of GC at the Cancer Hospital,Chinese Academy of Medical Sciences between November 2020 and October 2022.All of the patients screened received a PD-1 inhibitor combined with chemotherapy as the first-line treatment.RESULTS As of July 1,2023,the objective response rate was 61.9%,and the disease control rate was 96.8%.The median progression-free survival(mPFS)for all patients was 6.3 months.The median overall survival was not achieved.Survival analysis showed that patients with a combined positive score(CPS)≥1 exhibited an extended trend in progression-free survival(PFS)when compared to patients with a CPS of 0 after receiving a PD-1 inhibitor combined with oxaliplatin and tegafur as the first-line treatment.PFS exhibited a trend for prolongation as the expression level of HER2 increased.Based on PFS,we divided patients into two groups:A treatment group with excellent efficacy and a treatment group with poor efficacy.The mPFS of the excellent efficacy group was 8 months,with a mPFS of 9.1 months after excluding a cohort of patients who received interrupted therapy due to surgery.The mPFS was 4.5 months in patients in the group with poor efficacy who did not receive surgery.Using good/poor efficacy as the endpoint of our study,univariate analysis revealed that both CPS score(P=0.004)and HER2 expression level(P=0.015)were both factors that exerted significant influence on the efficacy of treatment the combination of a PD-1 inhibitor and chemotherapy in patients with advanced GC(AGC).Finally,multivariate analysis confirmed that CPS score was a significant influencing factor.CONCLUSION CPS score and HER2 expression both impacted the efficacy of immunotherapy combined with chemotherapy in AGC patients who were non-positive for HER2.
基金Supported by Universidad del Pais Vasco,Instituto Biodonostia,San Sebastian,and CIBERehd(red de enfermedades hepaticas y digestivas)American Cancer Society institutional awardMayo Clinic Pancreatic Cancer SPORE,No.CA102701
文摘Pancreatic ductal adenocarcinoma(PDAC),the most common type of pancreatic tumor,is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its earlymetastasis and lack of response to chemotherapy and radiation.Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells(CSCs),a small and distinct population of cancer cells that mediates tumoregenesis,metastasis and resistance to standard treatments.Thus,CSCs could be a target for more effective treatment options.Interestingly,pancreatic CSCs are subject to regulation by some of key embryonic stem cell(ESC)transctiption factors abberently expressed in PDAC,such as SOX2,OCT4 and NANOG.ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells.The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis.Here we provide an overview of stem cell transcription factors,particularly SOX2,OCT4,and NANOG,on their expression and function in pancreatic cancer.In contrast to embryonic stem cells,in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes,de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal,dedifferentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes.Thus,targeting ESC factors,particularly SOX2,could be a worthy strategy for pancreatic cancer therapy.
基金Supported by Ministry of Education,Culture,Sports Science,and Technology,and the Ministry of Health,Labour and Welfare of Japan
文摘Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and-18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin(CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1,-7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition(EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.
文摘BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS: Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real- time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by flow cytometric analysis. RESULTS: All pancreatic carcinoma cell lines tested expressed significantly higher levels of ABCG2 than non-malignant fibroblasts or two other malignant non- pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of five pancreatic carcinoma cell lines tested. Using flow cytometric analysis we confirmed surface expression of ABCG2 in all five lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels.CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.
文摘Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16<sup>INK4A</sup> and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.
文摘Ordinary chronic pancreatitis is a well-known risk factor for pancreatic cancer,whereas such an association with autoimmune pancreatitis(AIP)is widely debated.Due to the rarity of the latter disorder,there are few specific clinical and epidemiological studies investigating the relation between AIP and pancreatic cancer,which do not seem to support it.However,these studies are affected by several limitations and,therefore,a link between AIP(and,specifically,type 1 AIP)and pancreatic cancer cannot be ruled out definitively on this basis.Moreover,several immunopathological aspects of type 1 AIP and,in general,immunoglobulin G4-related disease can create an immunological context that may impair the tumoral immunosurveillance and promote the pancreatic carcinogenesis and its progression.In detail,Th2 immunological dominance,type 2 macrophage polarization and basophil infiltration observed in type 1 AIP,may play a permissive role in creating a favorable immunological environment for pancreatic carcinogenesis,in addition to the immunosuppressive therapies that can be used in these patients.
基金mostly supported through the funding provided by the National Natural Science Foundation of China(Grant No.81702866)the Key Program of the Natural Science Foundation of Zhejiang Province(Grant No.LZ16H160002)+2 种基金the Zhejiang Provincial Program for the Cultivation of HighLevel Innovative Health Talentsthe Foundation of the Education Department of Zhejiang Province(Grant No.Y201636451)partially supported through funding provided by the National Natural Science Foundation of China(Grant No.81472666)。
文摘Objective:Circulating tumor cells(CTCs)play a critical role in cancer metastasis,but their prevalence and significance remain unclear.This study attempted to track the epithelial-mesenchymal transition(EMT)status of CTCs in breast cancer patients and investigate their clinical relevance.Methods:In this study,the established negFACS-IF:E/M platform was applied to isolate rare CTCs and characterize their EMT status in breast cancer.A total of 89 breast cancer patients were recruited,including stage 0–III(n=60)and late stage(n=29)cases.Results:Using the negFACS-IF:E/M platform,it was found that in human epidermal growth factor receptor 2(HER2)+patients,mesenchymal CTCs usually exhibited a high percentage of HER2+cells.Stage IV breast cancer patients had considerably more CTCs than stage 0–III patients.Among stage 0–III breast cancers,the HER2 subtype included a significantly higher percentage of mesenchymal and biphenotypic(epithelial and mesenchymal)CTCs than the luminal A or B subtypes.Among stage IV patients,CTCs were predominantly epithelial in cases with local recurrence and were more mesenchymal in cases with distant metastasis.By applying a support vector machine(SVM)algorithm,the EMT status of CTCs could distinguish between breast cancer cases with metastasis/local recurrence and those without recurrence.Conclusions:The negFACS-IF:E/M platform provides a flexible and generally acceptable method for the highly sensitive and specific detection of CTCs and their EMT traits in breast cancer.This study demonstrated that the EMT status of CTCs had high clinical relevance in breast cancer,especially in predicting the distant metastasis or local recurrence of breast cancer.
文摘Far-infrared ray (FIR) is electromagnetic wave between 4 and 1000 μm. FIR causes heating, but how it affects cells is not well understood. In this study, we developed a culture incubator that can continuously irradiate cells with FIR and examined the effects of FIR on five human cancer cell lines, namely A431 (vulva), A549 (lung), HSC3 (tongue), MCF7 (breast) and Sa3 (gingiva). We found that FIR inhibits cell proliferation and induces cell hypertrophy without apoptosis in A549, HSC3 and Sa3 cells. Flow cytometry revealed that the inhibition of proliferation was due to G2/M arrest. Contrary, FIR did not inhibit cell proliferation and cause cell hypertrophy in A431 or MCF7 cells. Microarray analysis revealed that FIR suppressed the expression of cell proliferation-related and stress-responsive genes in FIR-sensitive cell lines (A549, HSC3 and Sa3). ATF3 in particular was identified as a key mediator of the FIR effect. Over-expression of ATF3 inhibited cell proliferation and knockdown of ATF3 mRNA using an antisense oligonucleotide suppressed FIR-induced growth arrest. These results indicate that a body temperature range of FIR radiation suppresses the proliferation of A549, HSC3, Sa3 cells and it appears that ATF3 play important roles in this effect.
文摘Objective:The aim of this study was to investigate the inhibitory effect of apogossypolone (ApoG2) on subcutaneous implants of human LNCaP prostatic carcinoma cells, and explore its mechanism. Methods:To establish human LNCaP prostatic carcinoma cell line subcutaneous xenograft models and observe the inhibitory effect of ApoG2 on the tumor model. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and-8 in tumor tissues. The microvessel density was calculated. Results:ApoG2 could obviously inhibit the growth of subcutaneous prostatic carcinoma implant. ApoG2 decreased the expression of PCNA and CD31, and increased the expression of caspases-3,-8 in tumor tissues. Conclusion:ApoG2 has an inhibitory effect on prostatic carcinoma implants.
文摘OBJECTIVE To investigate apoptosis induced by photodynamic therapy with benzoporphyrin derivative monoacid ring A (BPD-MA) and explore its potential mechanism in human bladder cancer cells. METHODS Photosensitization of BPD-MA was activated with a red light Laser (632.8nm) delivered at 10 mW/cm^2 to give a total dose of 2.4 J/cm^2. Cellular apoptosis was measured with flow cytometry analysis and an insitu terminal deoxyuridine nick end-labeling (TUNEL) assay. Changes in mitochondrial membrane potential (△φm) were monitored by a flow cy-tometric method with Rhodamine 123 staining and the expression of bcl- 2 in BIU-87 cells was detected with immunocytochemical staining. RESULTS At 8 h following photodynamic treatment, the degree of apoptosis was significantly increased when analyzed with flow cytometry and TUNEL assay. Treatment of the BIU-87 cells by PDT with BPD-MA resulted in the collapse of the △φm and a decrease of bcl-2 expression. CONCLUSION BPD-MA-mediated PDT can effectively induce apoptosis in BIU-87 cells. The mechanism probably is through a mitochondrial-initiated pathway.