期刊文献+
共找到846篇文章
< 1 2 43 >
每页显示 20 50 100
Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers 被引量:9
1
作者 Ruth Alvarez Hye-Lim Lee +1 位作者 Cun-Yu Wang Christine Hong 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期213-219,共7页
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with... Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140a, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51+/CD140a+, 0.8% were CD271+, and 2.4% were STRO-1+/CD146+. Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271+ DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine. 展开更多
关键词 cell surface markers dental mesenchymal stem cells periodontal ligament
下载PDF
Effects of lysophosphatidic acid on human periodontal ligament stem cells from teeth extracted from dental patients 被引量:3
2
作者 Byung Cheol Kim Jae-In Song +1 位作者 Kyoung-Ha So Sang-Hwan Hyun 《The Journal of Biomedical Research》 CAS CSCD 2019年第2期122-130,共9页
Despite their potential applications in future regenerative medicine, periodontal ligament stem cells(PDLSCs) are difficult to obtain in large amounts from patients. Therefore, maintaining sternness while expanding th... Despite their potential applications in future regenerative medicine, periodontal ligament stem cells(PDLSCs) are difficult to obtain in large amounts from patients. Therefore, maintaining sternness while expanding the cell numbers for medical use is the key to transitioning PDLSCs from the bench to the clinic. Lysophosphatidic acid(LPA), which is present in the human body and saliva, is a signaling molecule derived from phospholipids. In this study, we examined the effects of LPA on sternness maintenance in human PDLSCs. Several spindle-shaped and fibroblast-like periodontal ligament stem-like cell lines were established from PDLSC isolation. Among these cell lines, the most morphologically appropriate cell line was characterized. The expression levels of OCT4, NANOG(a stem cell marker), and CD90(a mesenchymal stem cell marker) were high. However, CD73(a negative marker of mesenchymal stem cells) expression was not observed. Notably, immunofluorescence analysis identified the expression of STRO-1, CD146(a mesenchymal stem cell marker), and sex determining region Y-box 2 at the protein level. In addition, lipid droplets were stained by Oil red O after the induction of adipogenesis for 21 days, and mineralized nodules were stained by Alizarin Red S after the induction of osteogenesis for 14 days. Alkaline phosphate staining also demonstrated the occurrence of osteogenesis. In summary, we established a human PDLSC line, which could be applied as a cell source for tissue regeneration in dental patients. However, further studies are needed to determine the detailed effects of LPA on PDLSCs. 展开更多
关键词 periodontal ligament stem CELL lysophosphatidic acid stemNESS primary CELL CULTURE
下载PDF
Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance the Osteoblastic Differentiation of Periodontal Ligament Stem Cells Under High Glucose Conditions Through the PI3K/AKT Signaling Pathway 被引量:5
3
作者 YANG Shuo ZHU Biao +4 位作者 TIAN Xiao Yu YU Han Ying QIAO Bo ZHAO Li Sheng ZHANG Bin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第9期811-820,共10页
Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application p... Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application prospects in tissue healing.The current study aimed to explore whether hUCMSC-exo could promote the osteogenic differentiation of hPDLSCs under HG conditions and the underlying mechanism.Methods We used a 30 mmol/L glucose concentration to simulate HG conditions.CCK-8 assay was performed to evaluate the effect of hUCMSC-exo on the proliferation of hPDLSCs.Alkaline phosphatase(ALP)staining,ALP activity,and qRT-PCR were performed to evaluate the pro-osteogenic effect of hUCMSC-exo on hPDLSCs.Western blot analysis was conducted to evaluate the underlying mechanism.Results The results of the CCK-8 assay,ALP staining,ALP activity,and qRT-PCR assay showed that hUCMSC-exo significantly promoted cell proliferation and osteogenic differentiation in a dosedependent manner.The Western blot results revealed that hUCMSC-exo significantly increased the levels of p-PI3K and p-AKT in cells,and the effect was inhibited by LY294002(PI3K inhibitor)or MK2206(AKT inhibitor),respectively.Moreover,the increases in osteogenic indicators induced by hUCMSC-exo were significantly suppressed by LY294002 and MK2206.Conclusion hUCMSC-exo promote the osteogenic differentiation of hPDLSCs under HG conditions through the PI3K/AKT signaling pathway. 展开更多
关键词 EXOSOMES human umbilical cord mesenchymal stem cell periodontal ligament stem cell Osteogenic differentiation High glucose PI3K/AKT
下载PDF
Human periodontal ligament stem cells repair mental nerve injury 被引量:2
4
作者 Bohan Li Hun-Jong Jung +3 位作者 Soung-Min Kim Myung-Jin Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第30期2827-2837,共11页
Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous ... Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury. 展开更多
关键词 neural regeneration peripheral nerve injury stem cells periodontal ligament stem cells mentalnerve Schwann cells cell transplantation sensory nerve neurotrophic factor NEUROREGENERATION
下载PDF
Mass acquisition of human periodontal ligament stem cells 被引量:4
5
作者 Hidefumi Maeda 《World Journal of Stem Cells》 SCIE CAS 2020年第9期1023-1031,共9页
The periodontal ligament(PDL)is an essential fibrous tissue for tooth retention in the alveolar bone socket.PDL tissue further functions to cushion occlusal force,maintain alveolar bone height,allow orthodontic tooth ... The periodontal ligament(PDL)is an essential fibrous tissue for tooth retention in the alveolar bone socket.PDL tissue further functions to cushion occlusal force,maintain alveolar bone height,allow orthodontic tooth movement,and connect tooth roots with bone.Severe periodontitis,deep caries,and trauma cause irreversible damage to this tissue,eventually leading to tooth loss through the destruction of tooth retention.Many patients suffer from these diseases worldwide,and its prevalence increases with age.To address this issue,regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells,scaffolds,and cytokines as well as their combined applications.In particular,PDL stem cells(PDLSCs)have been well studied.In this review,I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo. 展开更多
关键词 Induced pluripotent stem cells Mesoderm specific transcript periodontal ligament stem cells periodontal tissue Regenerative medicine Semaphorin 3A
下载PDF
Effects of Aging on the Proliferation and Differentiation Capacity of Human Periodontal Ligament Stem Cells 被引量:3
6
作者 TingtingDu NaLiu +4 位作者 BinGu YingLi YifangYuan WeiZhang TongZhang 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第2期83-91,共9页
periodontal ligament stem cells; aging; proliferation; osteogenic differentiation Objective The aim of this study is to investigate the proliferation, differentiation and apoptosis of periodontal ligament stem cells... periodontal ligament stem cells; aging; proliferation; osteogenic differentiation Objective The aim of this study is to investigate the proliferation, differentiation and apoptosis of periodontal ligament stem cells (PDLSC) derived from different aged donors, and to evaluate the effects of aging on the biological characteristics of PDLSC. Methods Periodontal ligament tissues were obtained from 24 surgically extracted human premolars during orthodontics therapy. The specimens were divided into three groups according to the donor’s age. Group A: 18-20 years, group B: 30-35 years, group C: 45-50 years. PDLSC were isolated and cultured using a tissue-block-based enzymolytic method by limiting dilution assay. The colony forming efficiency of PDLSC for three experimental groups was determined. Senescence-Associated β-Galactosidase (SA-β-G) expression in the three groups was examined using β-galactosidase staining working solution. Cell cycle and apoptosis of the PDLSC were examined by the flow cytometry. Alkaline phosphatase (ALP) activity was evaluated by ALP staining. The expression of osteoplastic differentiation related genes Runt-related transcription factor-2 (Runx-2), Collagen Type 1 (col-1), and ALP of PDLSC were examined by quantitative real-time RT-PCR. Results The colony forming efficiency of PDLSC in Group A, B and C was 36.67%, 22.67% and 9.33%, respectively, which decreased with donors’ age (P〈0.05). SA-β-G expression of the senescent PDLSC in group A, B and C were 4.14%, 16.39%, 50.38%, respectively (P〈0.05). Cells in G2/S phase was 38.73%, 29.88%, 18.25% (P〈0.05), and the apoptosis rate was 1.57%, 4.56%, 5.84% (P〈0.05), in group A, B and C respectively. The ALP staining in the three groups decreased with the increase of donors’ ages, and the expression of Runx-2, col-1 and ALP decreased gradually from group A to group C (all P〈0.05), which indicated the osteogenic differentiation capacity of PDLSC decreased while donor aging. Conclusion Human PDLSC could be successfully isolated from periodontal ligament tissues of different aged donors. However, the proliferation and osteogenic differentiation capacity of PDLSC decreased while donor aging. 展开更多
关键词 periodontal ligament stem cells AGING PROLIFERATION osteogenic differentiation
下载PDF
Overview of noncoding RNAs involved in the osteogenic differentiation of periodontal ligament stem cells 被引量:8
7
作者 Wei Qiu Bu-Ling Wu Fu-Chun Fang 《World Journal of Stem Cells》 SCIE CAS 2020年第4期251-265,共15页
Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue.The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal disea... Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue.The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal diseases.Human periodontal ligament(PDL)tissue possesses periodontal regenerative properties,and periodontal ligament stem cells(PDLSCs)with the capacity for osteogenic differentiation show strong potential in clinical application for periodontium repair and regeneration.Noncoding RNAs(ncRNAs),which include a substantial portion of poly-A tail mature RNAs,are considered“transcriptional noise.”Recent studies show that ncRNAs play a major role in PDLSC differentiation;therefore,exploring how ncRNAs participate in the osteogenic differentiation of PDLSCs may help to elucidate the underlying mechanism of the osteogenic differentiation of PDLSCs and further shed light on the potential of stem cell transplantation for periodontium regeneration.In this review paper,we discuss the history of PDLSC research and highlight the regulatory mechanism of ncRNAs in the osteogenic differentiation of PDLSCs. 展开更多
关键词 Noncoding RNAS periodontal regeneration periodontal ligament stem cells OSTEOGENIC DIFFERENTIATION
下载PDF
Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate 被引量:5
8
作者 Jyun-Yi Wu Chia-Hsin Chen +3 位作者 Li-Yin Yeh Ming-Long Yeh Chun-Chan Ting Yan-Hsiung Wang 《International Journal of Oral Science》 SCIE CAS CSCD 2013年第2期85-91,共7页
Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the... Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration. 展开更多
关键词 cell proliferation cyclic adenosine monophosphate human periodontal ligament cells low-power laser irradiation osteogenic differentiation
下载PDF
Therapeutic potential of periodontal ligament stem cells 被引量:9
9
作者 Aline Queiroz Emmanuel Albuquerque-Souza +4 位作者 Leticia Miquelitto Gasparoni Bruno Nunes de França Cibele Pelissari Marília Trierveiler Marinella Holzhausen 《World Journal of Stem Cells》 SCIE 2021年第6期605-618,共14页
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss.Due to the complexity of the periodontium,which is composed of several... Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss.Due to the complexity of the periodontium,which is composed of several tissues,its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available.Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry,especially therapies using mesenchymal stem cells,as they can be isolated from a myriad of tissues.Periodontal ligament stem cells(PDLSCs)are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium.Biological insights have also highlighted PDLSCs as promising immunomodulator agents.In this review,we explore the state of knowledge regarding the properties of PDLSCs,as well as their therapeutic potential,describing current and future clinical applications based on tissue engineering techniques. 展开更多
关键词 periodontal ligament stem cell Mesenchymal stem cell Regenerative dentistry THERAPEUTICS IMMUNOLOGY Cellular
下载PDF
Influence of baicalin on the expression of receptor activator of nuclear factor-κB ligand and osteoprotegerin in human periodontal ligament cells
10
作者 Yue ChenDepartment of Periodontology and Oral Medicine,Hospital of Stomatology,Xi’an Jiaotong University,Xi’an 710004,China 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第4期256-262,共7页
Objective To study the effect of baicalin on the expression of receptor activator of nuclear factor-κB ligand(RANKL)and osteoprotegerin(OPG)in cultured human periodontal ligament(HPDL)cells.Methods Small interfering ... Objective To study the effect of baicalin on the expression of receptor activator of nuclear factor-κB ligand(RANKL)and osteoprotegerin(OPG)in cultured human periodontal ligament(HPDL)cells.Methods Small interfering RNA(siRNA)eukaryotic expression vector targeted transforming growth factor βⅡ receptor(TGF-β RⅡ)was constructed and transfected into T cells.HPDL cells with T cells transfected with siRNA or not were placed in the culture medium that had been added with lipopolysaccharide(LPS)and baicalin.The obtained solution was divided into six groups according to the components(group Ⅰ:HPDL cells+LPS+T cells transfected with siRNA1+baicalin;group Ⅱ:HPDL cells+LPS+T cells transfected with siRNA1;group Ⅲ:HPDL cells+LPS+T cells+baicalin;group Ⅳ:HPDL cells+LPS+T cells;group Ⅴ:HPDL cells+baicalin;group Ⅵ:HPDL cells)and was cultured for 48 hours.RT-PCR was used to observe the effect of baicalin on the expression of OPG-RANKL in HPDL cells.Results The ratio of RANKL/OPG in group Ⅰ was lower than that in group Ⅱ(P<0.01)and higher than that in group Ⅲ(P<0.01);The ratio of RANKL/OPG in group Ⅲ was lower than that in group Ⅳ(P<0.01);the ratio of RANKL/OPG in group Ⅳ was higher than that in group Ⅵ(P<0.01);the ratio of RANKL/OPG in group Ⅴ was lower than that in group Ⅵ(P<0.05).Conclusion ① Baicalin could decrease the ratio of RANKL/OPG in HPDL cells.② The TGF-β signaling transduction plays an important role in the effect of baicalin on the RANKL/OPG ratio in HPDL cells.③ Baicalin acts not only through TGF-β to regulate RANKL/OPG in HPDL cells,but also through other pathways. 展开更多
关键词 transforming growth factor βⅡ receptor small interfering RNA OSTEOPROTEGERIN receptor activator of nuclear factor-κB ligand human periodontal ligament cell
下载PDF
Effects of Tension Force on Proliferation and Differentiation of Human Periodontal Ligament Cells Induced by Lipopolysaccharides
11
作者 Yanqi Yang Linkun Zhang +2 位作者 Chongshan Liao Jiajing Lu Chengfei Zhang 《Journal of Biosciences and Medicines》 2014年第3期13-19,共7页
Human periodontal ligament cells (hPDLCs), with the potential for multi-directional differentiation and reproduction, are the target cells of orthodontic tooth movement. The aim of this study was to examine the effect... Human periodontal ligament cells (hPDLCs), with the potential for multi-directional differentiation and reproduction, are the target cells of orthodontic tooth movement. The aim of this study was to examine the effect of mechanical tension force and lipopolysaccharides (LPS) on hPDLCs and whether they induce proliferative and differentiated characters in vitro. Tension force was applied to hPDLCs stimulated with and without LPS for 24 hrs. Real-time polymerase chain reaction (qPCR) was carried out to analyze the mRNA expression of Cyclin 2 (CCND2), WNT1 inducible signaling pathway protein 1 (WISP1), runt-related transcription factor 2 (RUNX2) and alkaline phosphatase (ALP). Analysis of variance (ANOVA) was used for statistical analysis. Significant differences were indicated by P < 0.05. The results showed that tension force promoted the mRNA expression of both the proliferation-related genes (CCND2 and WISP1) and differentiation-related genes (RUNX2 and ALP), and that both were enhanced by the simulation of LPS. In addition, the relative expression ratios CCND2/RUNX2 and CCND2/ALP both increased significantly after the application of tension, and this effect was further enhanced by LPS. All results indicated that with the assessed level of mechanical force loading, tension could promote both the proliferation and differentiation of hPDLCs, which could be enhanced by LPS, and that proliferation is promoted to a greater extent than differentiation. These findings may be valuable for understanding the importance of the application of suitable mechanical force in periodontal remodeling, especially in the process of orthodontic tooth movement with inflammation. 展开更多
关键词 human periodontal ligament cells Tension FORCE LIPOPOLYSACCHARIDES PROLIFERATION DIFFERENTIATION
下载PDF
Activation of cannabinoid receptor CB2 regulates LPS-induced pro-inflammatory cytokine production and osteoclastogenic gene expression in human periodontal ligament cells
12
作者 Hong Qian Jun Yi +4 位作者 Jingshi Zhou Ya Zhao Yongming Li Zuolin Jin Yin Ding 《Open Journal of Stomatology》 2013年第1期44-51,共8页
Background and Objective: It has been found that human periodontal ligament (hPDL) cells express cannabinoid receptor CB2. However, the functional importance of CB2 in hPDL cells exposed to bacterial endotoxins is not... Background and Objective: It has been found that human periodontal ligament (hPDL) cells express cannabinoid receptor CB2. However, the functional importance of CB2 in hPDL cells exposed to bacterial endotoxins is not known. Here we investigate if the inflammation promoter lipopolysaccharide (LPS) affects CB2 expression and if activation of CB2 regulates LPS-induced pro-inflammatory cytokine production and osteoclastogenic gene expression in hPDL cells. Methods: The hPDL cells were obtained from extracted teeth of periodontally healthy subjects. CB2 expression in hPDL cells exposed to LPS was deter- mined by quantitative real-time PCR analysis. Then, the cells were incubated with or without CB2-specific agonist HU-308 before further stimulation with LPS. In some experiments, the cells were pre-treated with CB2-specific antagonist SR144528. The production of pro-inflammatory cytokines interleukin-1 beta (IL- 1β), interleukin-6 (IL-6) and tumor necrosis factoralpha (TNF-α) was assessed by enzyme-linked immunosorbent assay (ELISA). The mRNA expression of osteoclastogenic genes osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) was examined using quantitative real-time PCR analysis. Results: CB2 expression in hPDL cells was markedly enhanced by LPS. HU-308 significantly suppressed the production of IL-1β, IL-6 and TNF-α exposed to LPS, whereas SR144528 attenuated this effect. The OPG/RANKL ratio decreased when exposed to LPS, furthermore increased significantly with the addition of HU-308 and finally decreased markedly after pretreatment with SR144528. Conclusion: Our study demonstrated that activation of CB2 had anti-inflammatory and anti-resorptive effects on LPS-stimulated hPDL cells. These findings suggest that activation of CB2 might be an effective therapeutic strategy for the treatment of inflammation and alveolar bone resorption in periodontitis. 展开更多
关键词 CANNABINOID Receptor CB2 LIPOPOLYSACCHARIDE human periodontal ligament cells IL-1β IL-6 TNF-α OPG RANKL
下载PDF
Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits 被引量:2
13
作者 Kyungha Shin Yeseul Cha +6 位作者 Young-Hwan Ban Da Woom Seo Ehn-Kyoung Choi Dongsun Park Sung Keun Kang Jeong Chan Ra Yun-Bae Kim 《World Journal of Stem Cells》 SCIE 2019年第12期1115-1129,共15页
BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,m... BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints. 展开更多
关键词 Osteoarthritis Anterior CRUCIATE ligament TRANSECTION human ADIPOSE tissuederived mesenchymal stem cell THROMBOSPONDIN 2 Notch signaling Cartilage regeneration
下载PDF
Proteomic profiling of various human dental stem cells-a systematic review 被引量:1
14
作者 Jagadish Hosmani Khalil Assiri +7 位作者 Hussain Mohammed Almubarak Master Luqman Mannakandath Ahmed Al-Hakami Shankargouda Patil Deepa Babji Sachin Sarode Anantharam Devaraj Harish C Chandramoorthy 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1214-1236,共23页
BACKGROUND The proteomic signature or profile best describes the functional component of a cell during its routine metabolic and survival activities.Additional complexity in differentiation and maturation is observed ... BACKGROUND The proteomic signature or profile best describes the functional component of a cell during its routine metabolic and survival activities.Additional complexity in differentiation and maturation is observed in stem/progenitor cells.The role of functional proteins at the cellular level has long been attributed to anatomical niches,and stem cells do not deflect from this attribution.Human dental stem cells(hDSCs),on the whole,are a combination of mesenchymal and epithelial coordinates observed throughout craniofacial bones to pulp.AIM To specify the proteomic profile and compare each type of hDSC with other mesenchymal stem cells(MSCs)of various niches.Furthermore,we analyzed the characteristics of the microenvironment and preconditioning changes associated with the proteomic profile of hDSCs and their influence on committed lineage differentiation.METHODS Literature searches were performed in PubMed,EMBASE,Scopus,and Web of Science databases,from January 1990 to December 2018.An extra inquiry of the grey literature was completed on Google Scholar,ProQuest,and OpenGrey.Relevant MeSH terms(PubMed)and keywords related to dental stem cells were used independently and in combination.RESULTS The initial search resulted in 134 articles.Of the 134 full-texts assessed,96 articles were excluded and 38 articles that met the eligibility criteria were reviewed.The overall assessment of hDSCs and other MSCs suggests that differences in the proteomic profile can be due to stem cellular complexity acquired from varied tissue sources during embryonic development.However,our comparison of the proteomic profile suffered inconsistencies due to the heterogeneity of various hDSCs.We believe that the existence of a heterogeneous population of stem cells at a given niche determines the modalities of regeneration or tissue repair.Added prominences to the differences present between various hDSCs have been reasoned out.CONCLUSION Systematic review on proteomic studies of various hDSCs are promising as an eye-opener for revisiting the proteomic profile and in-depth analysis to elucidate more refined mechanisms of hDSC functionalities. 展开更多
关键词 Apical papilla stem cells Dental follicle stem cells Dental pulp stem cells periodontal ligament stem cells PROTEOMICS
下载PDF
Comparative analysis of different feeder layers with 3T3 fibroblasts for culturing rabbits limbal stem cells 被引量:3
15
作者 Hui-Xian Wang Xiao-Wei Gao +4 位作者 Bing Ren Yan Cai Wen-Jing Li Yu-Li Yang Yi-Jian Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第7期1021-1027,共7页
AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament st... AIM: To explore the possibility of human umbilical cord mesenchymal stem cells(h UCMSCs), human umbilical vein endothelial cells(h UVECs), human dental pulp stem cells(h DPSCs) and human periodontal ligament stem cells(h PDLSCs) serving as feeder cells in co-culture systems for the cultivation of limbal stem cells.METHODS: Different feeder layers were cultured in Dulbecco's modified Eagle's medium(DMEM)/F12 and were treated with mitomycin C. Rabbits limbal stem cells(LSCs) were co-cultured on h UCMSCs, h UVECs, h DPSCs, h PDLSCs and NIH-3T3, and then comparative analysis were made between each group to see their respective colony-forming efficiency(CFE) assay and immunofluorescence(IPO13,CK3/12).RESULTS: The efficiency of the four type cells in supporting the LSCs morphology and its cellular differentiation was similar to that of NIH-3T3 fibroblasts as demonstrated by the immunostaining properties analysis, with each group exhibiting a similar strong expression pattern of IPO13, but lacking CK3 and CK12 expression in terms of immunostaining. But h UCMSCs, h DPSCs and h PDLSCs feeder layers were superior in promoting colony formation potential of cells when compared to h UVECs and feedercell-free culture.CONCLUSION: hUCMSCs, hDPSCs and hPDLSCs can be a suitable alternative to conventional mouse NIH-3T3 feeder cells, so that risk of zoonotic infection can be diminished. 展开更多
关键词 limbal stem cells feeder layers umbilical cord mesenchymal stem cells umbilical vein endothelial cells dental pulp stem cells periodontal ligament stem cells
下载PDF
Application of dental stem cells in three-dimensional tissue regeneration
16
作者 Hui-Yi Hsiao Chung-Yi Nien +2 位作者 Hsiang-Hsi Hong Ming-Huei Cheng Tzung-Hai Yen 《World Journal of Stem Cells》 SCIE 2021年第11期1610-1624,共15页
Dental stem cells can differentiate into different types of cells.Dental pulp stem cells,stem cells from human exfoliated deciduous teeth,periodontal ligament stem cells,stem cells from apical papilla,and dental folli... Dental stem cells can differentiate into different types of cells.Dental pulp stem cells,stem cells from human exfoliated deciduous teeth,periodontal ligament stem cells,stem cells from apical papilla,and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development.The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering.In recent years,three-dimensional(3D)tissue scaffolds have been used to reconstruct and restore different anatomical defects.With rapid advances in 3D tissue engineering,dental stem cells have been used in the regeneration of 3D engineered tissue.This review presents an overview of different types of dental stem cells used in 3D tissue regeneration,which are currently the most common type of stem cells used to treat human tissue conditions. 展开更多
关键词 Dental stem cells Dental pulp stem cells stem cells from human exfoliated deciduous teeth periodontal ligament stem cells stem cells from apical papilla Dental follicle progenitor cells Three-dimensional tissue regeneration
下载PDF
静态机械牵张力对HPDLSCs和PPDLSCs破骨相关基因表达的影响
17
作者 刘佳 郭冬会 +2 位作者 秦文 杨平 李强 《实用口腔医学杂志》 CAS CSCD 北大核心 2024年第2期257-262,共6页
目的:探讨健康牙周组织来源的牙周膜干细胞(HPDLSCs)和牙周病组织来源的牙周膜干细胞(PPDLSCs)在静态机械牵张力作用下破骨相关基因表达的异同。方法:采用低密度接种法分离培养HPDLSCs和PPDLSCs,应用流式细胞仪对两种细胞的表面间充质... 目的:探讨健康牙周组织来源的牙周膜干细胞(HPDLSCs)和牙周病组织来源的牙周膜干细胞(PPDLSCs)在静态机械牵张力作用下破骨相关基因表达的异同。方法:采用低密度接种法分离培养HPDLSCs和PPDLSCs,应用流式细胞仪对两种细胞的表面间充质干细胞标记物表达进行检测,使用Flexcell Tension Unit对HPDLSCs和PPDLSCs进行不同力值静态机械牵张力(SMS)加载,实时定量RT-PCR检测HPDLSCs和PPDLSCs中破骨相关基因RANKL和C-fos的表达。结果:间充质干细胞表面标记物STRO-1、CD146、CD90、CD29在HPDLSCs和PPDLSCs中均强阳性表达,且HPDLSCs中的表达显著高于PPDLSCs(P<0.05)。在未加载SMS情况下,PPDLSCs中RANKL和C-fos的表达水平明显高于HPDLSCs(P<0.05);当加载SMS≤12%形变量时,HPDLSCs中两种破骨相关基因的表达水平较未加力时无明显变化(P>0.05),而形变量达到14%时,二者的表达显著上调(P<0.05);在PPDLSCs组,当SMS≤8%形变量时,RANKL和C-fos的表达无明显变化(P>0.05),而SMS≥10%形变量时,可明显激活两种破骨基因的表达(P<0.05)。结论:HPDLSCs和PPDLSCs对SMS的反应不同,过大的静态牵张力会导致PPDLSCs表达破骨相关基因增强。 展开更多
关键词 牙周膜干细胞 静态机械牵张力 牙周炎 破骨相关基因
下载PDF
Effects of Ginsenoside Rg-1 on the Proliferation and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells 被引量:8
18
作者 殷丽华 程文晓 +5 位作者 秦子顺 孙可墨 钟梅 王家奎 高维岳 余占海 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2015年第9期676-681,共6页
Objective: TO evaluate the effects of ginsenoside Rg-1 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and to explore the possible application on the alveolar ... Objective: TO evaluate the effects of ginsenoside Rg-1 on the proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and to explore the possible application on the alveolar bone regeneration. Methods: To determine the optimum concentration, the effects of ginsenoside Rg-1 ranging from 10 to 100 μmol/L were evaluated by 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide, alkaline phosphatase activity and calcium deposition. Expressions of runt-related transcription factor 2, collagen alpha-2(I) chain, osteopontin, osteocalcin protein were examined using real-time polymerase chain reaction. Results: Compared with the control group, a certain concentration (10 μmol/L) of the Rg-1 solution significantly enhanced the proliferation and osteogenic differentiation of hPDLSCs (P〈0.05). However, concentrations that exceeds 100 μmol/L led to cytotoxicity whereas concentrations below 10 nmol/L showed no significant effect as compared with the control. Conclusion: Ginsenoside Rg-1 can enhance the proliferation and osteogenic differentiation of hPDLSCs at an optimal concentration of 10 μmol/L. 展开更多
关键词 ginsenoside Rg-1 osteogenic differentiation PROLIFERATION human periodontal ligament stem cell Chinese medicine
原文传递
炎症与正常牙周膜来源牙周膜干细胞的成骨分化能力和自噬水平
19
作者 毛家奇 赵力如 +3 位作者 杨冬茹 胡永青 代博文 李淑娟 《中国组织工程研究》 CAS 北大核心 2025年第1期74-79,共6页
背景:炎症影响牙周膜干细胞的成骨分化,同时牙周膜干细胞的成骨能力与自噬水平密切相关,但是炎症是否影响牙周膜干细胞成骨分化不同阶段的成骨能力与自噬水平尚未见相关报道。目的:探讨牙周膜干细胞在牙周炎和正常状态下的碱性磷酸酶表... 背景:炎症影响牙周膜干细胞的成骨分化,同时牙周膜干细胞的成骨能力与自噬水平密切相关,但是炎症是否影响牙周膜干细胞成骨分化不同阶段的成骨能力与自噬水平尚未见相关报道。目的:探讨牙周膜干细胞在牙周炎和正常状态下的碱性磷酸酶表达和自噬水平。方法:分离培养健康人群与牙周炎患者的牙周膜干细胞,进行Vimentin、pan-CK和Stro-1荧光染色。正常和炎症牙周膜干细胞成骨分化3,7,14d时,Westernblot检测碱性磷酸酶、LC3B、Beclin1、ATG5的蛋白表达,real-time PCR检测碱性磷酸酶、骨唾液蛋白、骨钙素、Runx2、LC3B、Beclin1、ATG5的mRNA表达。结果与结论:(1)牙周膜干细胞内Stro-1阳性表达,Vimentin阳性表达,pan-CK阴性表达;(2)成骨分化3,7,14 d,与正常牙周膜干细胞相比,炎症牙周膜干细胞所形成的矿化结节明显减少(P<0.01),碱性磷酸酶的蛋白和mRNA表达明显降低(P<0.05),骨唾液蛋白、骨钙素、Runx2的mRNA表达明显降低(P<0.05);(3)成骨分化7,14 d,与正常牙周膜干细胞相比,炎症牙周膜干细胞的ATG5、LC3B与Beclin1蛋白和mRNA表达均明显降低(P<0.05)。结果表明,炎症可减少牙周膜干细胞的矿化结节形成和碱性磷酸酶的表达,削弱牙周膜干细胞成骨分化7,14 d的自噬潜能。 展开更多
关键词 牙周膜干细胞 牙周炎 碱性磷酸酶 自噬 炎症 成骨分化
下载PDF
氧化苦参碱对牙周膜干细胞干性标志物表达和成骨分化的作用
20
作者 罗晶 雍敏 +8 位作者 陈琦 杨长怡 赵恬 马静 梅冬兰 虎金鹏 杨昭君 王钰然 刘博 《中国组织工程研究》 CAS 北大核心 2025年第19期3992-3999,共8页
背景:人牙周膜干细胞是牙周再生组织工程潜在的功能细胞,然而长期体外培养会导致牙周膜干细胞干性减低并发生复制性衰老,从而影响其治疗效果。目的:探讨氧化苦参碱在体外对牙周膜干细胞干性维持和骨向分化的影响,并寻找潜在的影响机制... 背景:人牙周膜干细胞是牙周再生组织工程潜在的功能细胞,然而长期体外培养会导致牙周膜干细胞干性减低并发生复制性衰老,从而影响其治疗效果。目的:探讨氧化苦参碱在体外对牙周膜干细胞干性维持和骨向分化的影响,并寻找潜在的影响机制。方法:采用组织块酶消化法从人牙周膜组织中分离、培养得到牙周膜干细胞,并使用流式细胞仪进行间充质细胞表面标志物鉴定。用0,2.5,5,10μg/mL氧化苦参碱孵育牙周膜干细胞,通过CCK8实验检测氧化苦参碱对牙周膜干细胞增殖活性的影响,筛选后续实验合适的药物质量浓度,采用Western blot检测牙周膜干细胞中干细胞非特异性蛋白SOX2和OCT4的表达,采用qRT-PCR、Western blot检测牙周膜干细胞中成骨相关基因和蛋白表达水平。结果与结论:①CCK8实验结果显示2.5μg/mL氧化苦参碱对牙周膜干细胞增殖活性有显著增强作用,后续实验选用2.5μg/mL氧化苦参碱进行干预;②与空白对照组相比,氧化苦参碱组牙周膜干细胞的干性标志物SOX2蛋白表达水平变化不明显(P>0.05),OCT4蛋白表达明显上调(P<0.05);③与成骨诱导组相比,氧化苦参碱+成骨诱导组牙周膜干细胞成骨相关基因ALP、RUNX2 mRNA表达及成骨相关蛋白ALP蛋白表达明显下调(P<0.05);④氧化苦参碱上调牙周膜干细胞干性标志物表达,抑制牙周膜干细胞骨向分化,高通量测序结果表明可能与WNT2、WNT16、COMP、BMP6有关。 展开更多
关键词 牙周膜干细胞 苦参碱类生物碱 成骨 细胞增殖 氧化苦参碱 干性维持 高通量测序
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部