期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Self-assembly of differentiated dental pulp stem cells facilitates spheroid human dental organoid formation and prevascularization
1
作者 Fei Liu Jing Xiao +4 位作者 Lei-Hui Chen Yu-Yue Pan Jun-Zhang Tian Zhi-Ren Zhang Xiao-Chun Bai 《World Journal of Stem Cells》 SCIE 2024年第3期287-304,共18页
BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling ... BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies. 展开更多
关键词 human dental pulp stem cells Prevascularized organoids Integrated analyses ANGIOGENESIS Forkhead box protein O1
下载PDF
Genetic modification of miR-34a enhances efficacy of transplanted human dental pulp stem cells after ischemic stroke 被引量:1
2
作者 Jianfeng Wang Peibang He +7 位作者 Qi Tian Yu Luo Yan He Chengli Liu Pian Gong Yujia Guo Qingsong Ye Mingchang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2029-2036,共8页
Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we use... Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke. 展开更多
关键词 antioxidant capacity HO-1 human dental pulp stem cells ischemic stroke MIR-34A Nrf2 proliferation SIRT1 WNT1 β-catenin
下载PDF
Identification and Isolation of Human Dental Pulp Stem Cells
3
作者 Xue-Chao YANG Ming-Wen FAN(Ministry Education Key Lab. For Oral Biomedical Engineering, Shool of Stomatology, Wuhan University,Wuhan 430079,China) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期101-102,共2页
关键词 CELL DPSCs Identification and Isolation of human Dental pulp stem cells DSPP
下载PDF
Gelatin-biofermentative unsulfated glycosaminoglycans semi-interpenetrating hydrogels via microbial-transglutaminase crosslinking enhance osteogenic potential of dental pulp stem cells 被引量:1
4
作者 Annalisa La Gatta Virginia Tirino +8 位作者 Marcella Cammarota Marcella La Noce Antonietta Stellavato Anna Virginia Adriana Pirozzi Marianna Portaccio Nadia Diano Luigi Laino Gianpaolo Papaccio Chiara Schiraldi 《Regenerative Biomaterials》 SCIE 2021年第3期110-123,共14页
Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering,and proved high potential in bone regeneration.This study aimed to evaluate,for the first time,the c... Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering,and proved high potential in bone regeneration.This study aimed to evaluate,for the first time,the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential.Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan–chondroitin mixture,obtaining semi-interpenetrating gels.The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone,whilst maintaining high stability.The heteropolysaccharides were retained for 30 days in the hydrogels,thus influencing cell response over this period.To evaluate the effect of hydrogel composition on bone regeneration,materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed.The expression of osteocalcin(OC)and osteopontin(OPN),both at gene and protein level,was evaluated at 7,15 and 30 days of culture.Scanning electron microscopy(SEM)and two-photon microscope observations were performed to assess bone-like extracellular matrix(ECM)deposition and to observe the cell penetration depth.In the presence of the heteropolysaccharides,OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed.Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin,fastening bone deposition. 展开更多
关键词 HYDROGELS GELATIN HYALURONAN biotechnological chondroitin bone regeneration human dental pulp stem cells
原文传递
Magnetic bioassembly platforms towards the generation of extracellular vesicles from human salivary gland functional organoids for epithelial repair 被引量:5
5
作者 Ajjima Chansaenroj Christabella Adine +9 位作者 Sawanya Charoenlappanit Sittiruk Roytrakul Ladawan Sariya Thanaphum Osathanon Sasitorn Rungarunlert Ganokon Urkasemsin Risa Chaisuparat Supansa Yodmuang Glauco R.Souza Joao N.Ferreira 《Bioactive Materials》 SCIE 2022年第12期151-163,共13页
Salivary glands(SG)are exocrine organs with secretory units commonly injured by radiotherapy.Bio-engineered organoids and extracellular vesicles(EV)are currently under investigation as potential strategies for SG repa... Salivary glands(SG)are exocrine organs with secretory units commonly injured by radiotherapy.Bio-engineered organoids and extracellular vesicles(EV)are currently under investigation as potential strategies for SG repair.Herein,three-dimensional(3D)cultures of SG functional organoids(SGo)and human dental pulp stem cells(hDPSC)were generated by magnetic 3D bioassembly(M3DB)platforms.Fibroblast growth factor 10(FGF10)was used to enrich the SGo in secretory epithelial units.After 11 culture days via M3DB,SGo displayed SG-specific acinar epithelial units with functional properties upon neurostimulation.To consistently develop 3D hDPSC in vitro,3 culture days were sufficient to maintain hDPSC undifferentiated genotype and phenotype for EV generation.EV isolation was performed via sequential centrifugation of the conditioned media of hDPSC and SGo cultures.EV were characterized by nanoparticle tracking analysis,electron microscopy and immunoblotting.EV were in the exosome range for hDPSC(diameter:88.03±15.60 nm)and for SGo(123.15±63.06 nm).Upon ex vivo administration,exosomes derived from SGo significantly stimulated epithelial growth(up to 60%),mitosis,epithelial progenitors and neuronal growth in injured SG;however,such biological effects were less distinctive with the ones derived from hDPSC.Next,these exosome biological effects were investigated by proteomic arrays.Mass spectrometry profiling of SGo exosomes predicted that cellular growth,development and signaling was due to known and undocumented molecular targets downstream of FGF10.Semaphorins were identified as one of the novel targets requiring further investigations.Thus,M3DB platforms can generate exosomes with potential to ameliorate SG epithelial damage. 展开更多
关键词 Salivary gland HYPOSALIVATION human dental pulp stem cells Magnetic bioassembly ORGANOIDS EXOSOME
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部