Cryopreservation of red blood cells(RBCs)provides great potential benefits for providing transfusion timely in emergencies.High concentrations of glycerol(20%or 40%)are used for RBC cryopreservation in current clinica...Cryopreservation of red blood cells(RBCs)provides great potential benefits for providing transfusion timely in emergencies.High concentrations of glycerol(20%or 40%)are used for RBC cryopreservation in current clinical practice,which results in cytotoxicity and osmotic injuries that must be carefully controlled.However,existing studies on the low-glycerol cryopreservation of RBCs still suffer from the bottleneck of low hematocrit levels,which require relatively large storage space and an extra concentration process before transfusion,making it inconvenient(time-consuming,and also may cause injury and sample lose)for clinical applications.To this end,we develop a novel method for the glycerol-free cryopreservation of human RBCs with a high final hematocrit by using trehalose as the sole cryoprotectant to dehydrate RBCs and using core–shell alginate hydrogel microfibers to enhance heat transfer during cryopreservation.Different from previous studies,we achieve the cryopreservation of human RBCs at high hematocrit(>40%)with high recovery(up to 95%).Additionally,the washed RBCs post-cryopreserved are proved to maintain their morphology,mechanics,and functional properties.This may provide a nontoxic,high-efficiency,and glycerol-free approach for RBC cryopreservation,along with potential clinical transfusion benefits.展开更多
In this paper,we introduce our finding of the effects of C_(60) nanoparticles (NP) infiltration on mechanical properties of cell and its membrane.Atomic force microscopy (AFM) is used to perform indentation on both no...In this paper,we introduce our finding of the effects of C_(60) nanoparticles (NP) infiltration on mechanical properties of cell and its membrane.Atomic force microscopy (AFM) is used to perform indentation on both normal and C_(60) infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane.Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C_(60) NPs.The resistance and ultimate strength of the C_(60) infiltrated RBC membrane significantly decrease.We also explain the mechanism of how C_(60) NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C_(60) infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer.The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed.Nanotoxicity of C_(60) NPs may be significant for some biological cells.展开更多
基金the National Natural Science Foundation of China(No.82172114)the Anhui Provincial Natural Science Foundation for Distinguished Young Scholars(No.2108085J37).
文摘Cryopreservation of red blood cells(RBCs)provides great potential benefits for providing transfusion timely in emergencies.High concentrations of glycerol(20%or 40%)are used for RBC cryopreservation in current clinical practice,which results in cytotoxicity and osmotic injuries that must be carefully controlled.However,existing studies on the low-glycerol cryopreservation of RBCs still suffer from the bottleneck of low hematocrit levels,which require relatively large storage space and an extra concentration process before transfusion,making it inconvenient(time-consuming,and also may cause injury and sample lose)for clinical applications.To this end,we develop a novel method for the glycerol-free cryopreservation of human RBCs with a high final hematocrit by using trehalose as the sole cryoprotectant to dehydrate RBCs and using core–shell alginate hydrogel microfibers to enhance heat transfer during cryopreservation.Different from previous studies,we achieve the cryopreservation of human RBCs at high hematocrit(>40%)with high recovery(up to 95%).Additionally,the washed RBCs post-cryopreserved are proved to maintain their morphology,mechanics,and functional properties.This may provide a nontoxic,high-efficiency,and glycerol-free approach for RBC cryopreservation,along with potential clinical transfusion benefits.
基金supported by the National Natural Science Foundation of China (Grant Nos.10902128,11072271,10972239,51172291)Fundamental Research Funds for the Central Universities,New Century Excellent Talents in University and Research Funds for the Doctoral Program of Higher Education
文摘In this paper,we introduce our finding of the effects of C_(60) nanoparticles (NP) infiltration on mechanical properties of cell and its membrane.Atomic force microscopy (AFM) is used to perform indentation on both normal and C_(60) infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane.Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C_(60) NPs.The resistance and ultimate strength of the C_(60) infiltrated RBC membrane significantly decrease.We also explain the mechanism of how C_(60) NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C_(60) infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer.The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed.Nanotoxicity of C_(60) NPs may be significant for some biological cells.