In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programm...In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programming/erasing, and reliability. The lateral distribution of injected charges can be measured precisely using the charge pumping method. To improve the precision of the actual measurement, a combination of a constant low voltage method and a constant high voltage method is introduced during the charge pumping testing of the drain side and the source side, respectively. Finally, the electron distribution after channel hot electron programming in SONOS memory is obtained,which is close to the drain side with a width of about 50nm.展开更多
Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a...Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a ground plane,holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps.Here we report our fabrication and characterization of the first stylus ion trap constructed in China,aiming for studying quantum optics and sensing weak electric fields in the future.We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method.Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.展开更多
The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is establish...The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is established and then applied to the Tangshan earthquake data, with some conclusions drawn.展开更多
In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize th...In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of Circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.展开更多
We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photoni...We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.展开更多
We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical ...We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy.展开更多
The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interac...The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interaction between bosons is treated as a hard-core potential. By using variational Monte Carlo method, we diagonalize the one-body density matrix of the system to obtain the ground-state energy, condensate wavefunction and the condensate fraction. We find that in the dilute limit the depletion of central condensate in the 2D system is larger than in a 3D system for the same interaction strength; however as the density increases, the depletion at the centre of 2D trap will be equal to or even lower than that at the centre of 3D trap, which is in agreement with the anticipated in Thomas-Fermi approximation. In addition, in the 2D system the total condensate depletion is still larger than in a 3D system for the same scattering length.展开更多
The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extr...The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation.展开更多
文摘In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programming/erasing, and reliability. The lateral distribution of injected charges can be measured precisely using the charge pumping method. To improve the precision of the actual measurement, a combination of a constant low voltage method and a constant high voltage method is introduced during the charge pumping testing of the drain side and the source side, respectively. Finally, the electron distribution after channel hot electron programming in SONOS memory is obtained,which is close to the drain side with a width of about 50nm.
基金Project supported by the Special Project for Research and Development in Key Areas of Guangdong Province,China (Grant No.2020B0303300001)the National Natural Science Foundation of China (Grant Nos.U21A20434,12074346,12074390,11835011,11804375,and 11804308)+2 种基金the Fund from the Key Laboratory of Guangzhou for Quantum Precision Measurement (Grant No.202201000010)the Science and Technology Projects in Guangzhou (Grant No.202201011727)the Nansha Senior Leading Talent Team Technology Project (Grant No.2021CXTD02)。
文摘Cold trapped ions can be excellent sensors for ultra-precision detection of physical quantities,which strongly depends on the measurement situation at hand.The stylus ion trap,formed by two concentric cylinders over a ground plane,holds the promise of relatively simple structure and larger solid angle for optical access and fluorescence collection in comparison with the conventional ion traps.Here we report our fabrication and characterization of the first stylus ion trap constructed in China,aiming for studying quantum optics and sensing weak electric fields in the future.We have observed the stable confinement of the ion in the trapping potential for more than two hours and measured the heating rate of the trap to be dε/dt=7.10±0.13 meV/s by the Doppler recooling method.Our work starts a way to building practical quantum sensors with high efficiency of optical collection and with ultimate goal for contributing to future quantum information technology.
文摘The concept of Initial Casualty Matrix is introduced. Using some probability distribution functions, the initial casualty matrix of masonry is determined. The dynamic method of seismic casualty assessment is established and then applied to the Tangshan earthquake data, with some conclusions drawn.
基金Ministry of Science and Technology under Grant No.MOST 103-2815-C-019-003-E to the undergraduate studentthe NSC under Grant No.100-2221-E-019-040-MY3
文摘In this study, the null-field boundary integral equation method (BIEM) and the image method are used to solve the SH wave scattering problem containing semi-circular canyons and circular tunnels. To fully utilize the analytical property of Circular geometry, the polar coordinates are used to expand the closed-form fundamental solution to the degenerate kernel, and the Fourier series is also introduced to represent the boundary density. By collocating boundary points to match boundary condition on the boundary, a linear algebraic system is constructed. The unknown coefficients in the algebraic system can be easily determined. In this way, a semi-analytical approach is developed. Following the experience of near-trapped modes in water wave problems of the full plane, the focusing phenomenon and near-trapped modes for the SH wave problem of the half-plane are solved, since the two problems obey the same mathematical model. In this study, it is found that the SH wave problem containing two semi-circular canyons and a circular tunnel has the near-trapped mode and the focusing phenomenon for a special incident angle and wavenumber. In this situation, the amplification factor for the amplitude of displacement is over 300.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11247240)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123705120002)+3 种基金the Open Project of State Key Laboratory of Crystal Material in Shandong University, China (Grant No. KF1103)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024)the Youth Funds from Qufu Normal University, China (Grant No. XJ201219)the Scientific Research Foundation for Doctors of Qufu Normal University, China (Grant No. BSQD20110132)
文摘We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.
基金supported by the National Natural Science Foundation of China(Grant Nos.11302220,11374292,and 31100555)the National Basic Research Program of China(Grant No.2011CB910402)
文摘We introduce a corrected sinusoidal-wave drag force method (SDFM) into optical tweezers to calibrate the trapping stiffness of the optical trap and conversion factor (CF) of photodetectors. First, the theoretical analysis and experimental result demonstrate that the correction of SDFM is necessary, especially the error of no correction is up to 11.25% for a bead of 5μm in diameter. Second, the simulation results demonstrate that the SDFM has a better performance in the calibration of optical tweezers than the triangular-wave drag force method (TDFM) and power spectrum density method (PSDM) at the same signal-to-noise ratio or trapping stiffness. Third, in experiments, the experimental standard deviations of calibration of trapping stiffness and CF with the SDFM are about less than 50% of TDFM and PSDM especially at low laser power. Finally, the experiments of stretching DNA verify that the in situ calibration with the SDFM improves the measurement stability and accuracy.
文摘The ground-state properties of a system with a small number of interacting bosons over a wide range of densities are investigated. The system is confined in a two-dimensional isotropic harmonic trap, where the interaction between bosons is treated as a hard-core potential. By using variational Monte Carlo method, we diagonalize the one-body density matrix of the system to obtain the ground-state energy, condensate wavefunction and the condensate fraction. We find that in the dilute limit the depletion of central condensate in the 2D system is larger than in a 3D system for the same interaction strength; however as the density increases, the depletion at the centre of 2D trap will be equal to or even lower than that at the centre of 3D trap, which is in agreement with the anticipated in Thomas-Fermi approximation. In addition, in the 2D system the total condensate depletion is still larger than in a 3D system for the same scattering length.
基金The project supported by the National Natural Science Foundation of China
文摘The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation.